Cargando…

GREM, a technique for genome-wide isolation and quantitative analysis of promoter active repeats

We developed a technique called GREM (Genomic Repeat Expression Monitor) that can be applied to genome-wide isolation and quantitative analysis of any kind of transcriptionally active repetitive elements. Briefly, the technique includes three major stages: (i) generation of a transcriptome wide libr...

Descripción completa

Detalles Bibliográficos
Autores principales: Buzdin, Anton, Kovalskaya-Alexandrova, Elena, Gogvadze, Elena, Sverdlov, Eugene
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2006
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303178/
https://www.ncbi.nlm.nih.gov/pubmed/16698959
http://dx.doi.org/10.1093/nar/gkl335
Descripción
Sumario:We developed a technique called GREM (Genomic Repeat Expression Monitor) that can be applied to genome-wide isolation and quantitative analysis of any kind of transcriptionally active repetitive elements. Briefly, the technique includes three major stages: (i) generation of a transcriptome wide library of cDNA 5′ terminal fragments, (ii) selective amplification of repeat-flanking genomic loci and (iii) hybridization of the cDNA library (i) to the amplicon (ii) with subsequent selective amplification and cloning of the cDNA-genome hybrids. The sequences obtained serve as ‘tags’ for promoter active repetitive elements. The advantage of GREM is an unambiguous mapping of individual promoter active repeats at a genome-wide level. We applied GREM for genome-wide experimental identification of human-specific endogenous retroviruses and their solitary long terminal repeats (LTRs) acting in vivo as promoters. Importantly, GREM tag frequencies linearly correlated with the corresponding LTR-driven transcript levels found using RT–PCR. The GREM technique enabled us to identify 54 new functional human promoters created by retroviral LTRs.