Cargando…
Contribution to the Study of the Relation between Microstructure and Electrochemical Behavior of Iron-Based FeCoC Ternary Alloys
This work deals with the relation between microstructure and electrochemical behavior of four iron-based FeCoC ternary alloys. First, the arc-melted studied alloys were characterized using differential thermal analyses and scanning electron microscopy. The established solidification sequences of the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303192/ https://www.ncbi.nlm.nih.gov/pubmed/22448342 http://dx.doi.org/10.1155/2012/798043 |
Sumario: | This work deals with the relation between microstructure and electrochemical behavior of four iron-based FeCoC ternary alloys. First, the arc-melted studied alloys were characterized using differential thermal analyses and scanning electron microscopy. The established solidification sequences of these alloys show the presence of two primary crystallization phases (δ(Fe) and graphite) as well as two univariante lines : peritectic L + δ(Fe)↔γ(Fe) and eutectic L↔γ(Fe) + C(graphite). The ternary alloys were thereafter studied in nondeaerated solution of 10(−3) M NaHCO3 + 10(−3) M Na(2)SO(4), at 25°C, by means of the potentiodynamic technique. The results indicate that the corrosion resistance of the FeCoC alloys depends on the carbon amount and the morphology of the phases present in the studied alloys. |
---|