Cargando…
Modulation of endoplasmic reticulum stress and cardiomyocyte apoptosis by mulberry leaf diet in experimental autoimmune myocarditis rats
Mulberry is commonly used as silkworm diet and an alternative medicine in Japan and China, has recently reported to contain many antioxidative flavanoid compounds and having the free radical scavenging effects. Antioxidants reduce cardiac oxidative stress and attenuate cardiac dysfunction in animals...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
the Society for Free Radical Research Japan
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303476/ https://www.ncbi.nlm.nih.gov/pubmed/22448095 http://dx.doi.org/10.3164/jcbn.11-44 |
Sumario: | Mulberry is commonly used as silkworm diet and an alternative medicine in Japan and China, has recently reported to contain many antioxidative flavanoid compounds and having the free radical scavenging effects. Antioxidants reduce cardiac oxidative stress and attenuate cardiac dysfunction in animals with pacing-induced congestive heart failure. Hence we investigated the cardioprotective effect of mulberry leaf powder in rats with experimental autoimmune myocarditis. Eight-week-old Lewis rats immunized with cardiac myosin were fed with either normal chow or a diet containing 5% mulberry leaf powder and were examined on day 21. ML significantly decreased oxidative stress, myocyte apoptosis, cellular infiltration, cardiac fibrosis, mast cell density, myocardial levels of sarco/endo-plasmic reticulum Ca(2+) ATPase2, p22(phox), receptor for advanced glycation end products, phospho-p38 mitogen activated protein kinase, phospho-c-Jun NH(2)-terminal protein kinase, glucose regulated protein78, caspase12 and osteopontin levels in EAM rats. These results may suggest that mulberry diet can preserve the cardiac function in experimental autoimmune myocarditis by modulating oxidative stress induced MAPK activation and further afford protection against endoplasmic reticulum stress mediated apoptosis. |
---|