Cargando…

Identification of gene-oriented exon orthology between human and mouse

BACKGROUND: Gene orthology has been well studied in the evolutionary area and is thought to be an important implication to functional genome annotations. As the accumulation of transcriptomic data, alternative splicing is taken into account in the assignments of gene orthologs and the orthology is s...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Gloria C-L, Lin, Wen-chang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303729/
https://www.ncbi.nlm.nih.gov/pubmed/22369432
http://dx.doi.org/10.1186/1471-2164-13-S1-S10
_version_ 1782226779797192704
author Fu, Gloria C-L
Lin, Wen-chang
author_facet Fu, Gloria C-L
Lin, Wen-chang
author_sort Fu, Gloria C-L
collection PubMed
description BACKGROUND: Gene orthology has been well studied in the evolutionary area and is thought to be an important implication to functional genome annotations. As the accumulation of transcriptomic data, alternative splicing is taken into account in the assignments of gene orthologs and the orthology is suggested to be further considered at transcript level. Whether gene or transcript orthology, exons are the basic units that represent the whole gene structure; however, there is no any reported study on how to build exon level orthology in a whole genome scale. Therefore, it is essential to establish a gene-oriented exon orthology dataset. RESULTS: Using a customized pipeline, we first build exon orthologous relationships from assigned gene orthologs pairs in two well-annotated genomes: human and mouse. More than 92% of non-overlapping exons have at least one ortholog between human and mouse and only a small portion of them own more than one ortholog. The exons located in the coding region are more conserved in terms of finding their ortholog counterparts. Within the untranslated region, the 5' UTR seems to have more diversity than the 3' UTR according to exon orthology designations. Interestingly, most exons located in the coding region are also conserved in length but this conservation phenomenon dramatically drops down in untranslated regions. In addition, we allowed multiple assignments in exon orthologs and a subset of exons with possible fusion/split events were defined here after a thorough analysis procedure. CONCLUSIONS: Identification of orthologs at the exon level is essential to provide a detailed way to interrogate gene orthology and splicing analysis. It could be used to extend the genome annotation as well. Besides examining the one-to-one orthologous relationship, we manage the one-to-multi exon pairs to represent complicated exon generation behavior. Our results can be further applied in many research fields studying intron-exon structure and alternative/constitutive exons in functional genomic areas.
format Online
Article
Text
id pubmed-3303729
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-33037292012-03-15 Identification of gene-oriented exon orthology between human and mouse Fu, Gloria C-L Lin, Wen-chang BMC Genomics Proceedings BACKGROUND: Gene orthology has been well studied in the evolutionary area and is thought to be an important implication to functional genome annotations. As the accumulation of transcriptomic data, alternative splicing is taken into account in the assignments of gene orthologs and the orthology is suggested to be further considered at transcript level. Whether gene or transcript orthology, exons are the basic units that represent the whole gene structure; however, there is no any reported study on how to build exon level orthology in a whole genome scale. Therefore, it is essential to establish a gene-oriented exon orthology dataset. RESULTS: Using a customized pipeline, we first build exon orthologous relationships from assigned gene orthologs pairs in two well-annotated genomes: human and mouse. More than 92% of non-overlapping exons have at least one ortholog between human and mouse and only a small portion of them own more than one ortholog. The exons located in the coding region are more conserved in terms of finding their ortholog counterparts. Within the untranslated region, the 5' UTR seems to have more diversity than the 3' UTR according to exon orthology designations. Interestingly, most exons located in the coding region are also conserved in length but this conservation phenomenon dramatically drops down in untranslated regions. In addition, we allowed multiple assignments in exon orthologs and a subset of exons with possible fusion/split events were defined here after a thorough analysis procedure. CONCLUSIONS: Identification of orthologs at the exon level is essential to provide a detailed way to interrogate gene orthology and splicing analysis. It could be used to extend the genome annotation as well. Besides examining the one-to-one orthologous relationship, we manage the one-to-multi exon pairs to represent complicated exon generation behavior. Our results can be further applied in many research fields studying intron-exon structure and alternative/constitutive exons in functional genomic areas. BioMed Central 2012-01-17 /pmc/articles/PMC3303729/ /pubmed/22369432 http://dx.doi.org/10.1186/1471-2164-13-S1-S10 Text en Copyright © 2012 Fu and Lin; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Proceedings
Fu, Gloria C-L
Lin, Wen-chang
Identification of gene-oriented exon orthology between human and mouse
title Identification of gene-oriented exon orthology between human and mouse
title_full Identification of gene-oriented exon orthology between human and mouse
title_fullStr Identification of gene-oriented exon orthology between human and mouse
title_full_unstemmed Identification of gene-oriented exon orthology between human and mouse
title_short Identification of gene-oriented exon orthology between human and mouse
title_sort identification of gene-oriented exon orthology between human and mouse
topic Proceedings
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3303729/
https://www.ncbi.nlm.nih.gov/pubmed/22369432
http://dx.doi.org/10.1186/1471-2164-13-S1-S10
work_keys_str_mv AT fugloriacl identificationofgeneorientedexonorthologybetweenhumanandmouse
AT linwenchang identificationofgeneorientedexonorthologybetweenhumanandmouse