Cargando…

An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation

This study presents the development of a robust aluminum-based microfluidic chip fabricated by conventional mechanical micromachining (computer numerical control-based micro-milling process). It applied the aluminum-based microfluidic chip to form poly(lactic-co-glycolic acid) (PLGA) microparticles...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yung-Sheng, Yang, Chih-Hui, Wang, Chih-Yu, Chang, Fang-Rong, Huang, Keng-Shiang, Hsieh, Wan-Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304121/
https://www.ncbi.nlm.nih.gov/pubmed/22438719
http://dx.doi.org/10.3390/s120201455
_version_ 1782226836153958400
author Lin, Yung-Sheng
Yang, Chih-Hui
Wang, Chih-Yu
Chang, Fang-Rong
Huang, Keng-Shiang
Hsieh, Wan-Chen
author_facet Lin, Yung-Sheng
Yang, Chih-Hui
Wang, Chih-Yu
Chang, Fang-Rong
Huang, Keng-Shiang
Hsieh, Wan-Chen
author_sort Lin, Yung-Sheng
collection PubMed
description This study presents the development of a robust aluminum-based microfluidic chip fabricated by conventional mechanical micromachining (computer numerical control-based micro-milling process). It applied the aluminum-based microfluidic chip to form poly(lactic-co-glycolic acid) (PLGA) microparticles encapsulating CdSe/ZnS quantum dots (QDs). A cross-flow design and flow-focusing system were employed to control the oil-in-water (o/w) emulsification to ensure the generation of uniformly-sized droplets. The size of the droplets could be tuned by adjusting the flow rates of the water and oil phases. The proposed microfluidic platform is easy to fabricate, set up, organize as well as program, and is valuable for further applications under harsh reaction conditions (high temperature and/or strong organic solvent systems). The proposed method has the advantages of actively controlling the droplet diameter, with a narrow size distribution, good sphericity, as well as being a simple process with a high throughput. In addition to the fluorescent PLGA microparticles in this study, this approach can also be applied to many applications in the pharmaceutical and biomedical area.
format Online
Article
Text
id pubmed-3304121
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Molecular Diversity Preservation International (MDPI)
record_format MEDLINE/PubMed
spelling pubmed-33041212012-03-21 An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation Lin, Yung-Sheng Yang, Chih-Hui Wang, Chih-Yu Chang, Fang-Rong Huang, Keng-Shiang Hsieh, Wan-Chen Sensors (Basel) Article This study presents the development of a robust aluminum-based microfluidic chip fabricated by conventional mechanical micromachining (computer numerical control-based micro-milling process). It applied the aluminum-based microfluidic chip to form poly(lactic-co-glycolic acid) (PLGA) microparticles encapsulating CdSe/ZnS quantum dots (QDs). A cross-flow design and flow-focusing system were employed to control the oil-in-water (o/w) emulsification to ensure the generation of uniformly-sized droplets. The size of the droplets could be tuned by adjusting the flow rates of the water and oil phases. The proposed microfluidic platform is easy to fabricate, set up, organize as well as program, and is valuable for further applications under harsh reaction conditions (high temperature and/or strong organic solvent systems). The proposed method has the advantages of actively controlling the droplet diameter, with a narrow size distribution, good sphericity, as well as being a simple process with a high throughput. In addition to the fluorescent PLGA microparticles in this study, this approach can also be applied to many applications in the pharmaceutical and biomedical area. Molecular Diversity Preservation International (MDPI) 2012-02-01 /pmc/articles/PMC3304121/ /pubmed/22438719 http://dx.doi.org/10.3390/s120201455 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
spellingShingle Article
Lin, Yung-Sheng
Yang, Chih-Hui
Wang, Chih-Yu
Chang, Fang-Rong
Huang, Keng-Shiang
Hsieh, Wan-Chen
An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation
title An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation
title_full An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation
title_fullStr An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation
title_full_unstemmed An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation
title_short An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation
title_sort aluminum microfluidic chip fabrication using a convenient micromilling process for fluorescent poly(dl-lactide-co-glycolide) microparticle generation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304121/
https://www.ncbi.nlm.nih.gov/pubmed/22438719
http://dx.doi.org/10.3390/s120201455
work_keys_str_mv AT linyungsheng analuminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration
AT yangchihhui analuminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration
AT wangchihyu analuminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration
AT changfangrong analuminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration
AT huangkengshiang analuminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration
AT hsiehwanchen analuminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration
AT linyungsheng aluminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration
AT yangchihhui aluminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration
AT wangchihyu aluminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration
AT changfangrong aluminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration
AT huangkengshiang aluminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration
AT hsiehwanchen aluminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration