Cargando…
An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation
This study presents the development of a robust aluminum-based microfluidic chip fabricated by conventional mechanical micromachining (computer numerical control-based micro-milling process). It applied the aluminum-based microfluidic chip to form poly(lactic-co-glycolic acid) (PLGA) microparticles...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304121/ https://www.ncbi.nlm.nih.gov/pubmed/22438719 http://dx.doi.org/10.3390/s120201455 |
_version_ | 1782226836153958400 |
---|---|
author | Lin, Yung-Sheng Yang, Chih-Hui Wang, Chih-Yu Chang, Fang-Rong Huang, Keng-Shiang Hsieh, Wan-Chen |
author_facet | Lin, Yung-Sheng Yang, Chih-Hui Wang, Chih-Yu Chang, Fang-Rong Huang, Keng-Shiang Hsieh, Wan-Chen |
author_sort | Lin, Yung-Sheng |
collection | PubMed |
description | This study presents the development of a robust aluminum-based microfluidic chip fabricated by conventional mechanical micromachining (computer numerical control-based micro-milling process). It applied the aluminum-based microfluidic chip to form poly(lactic-co-glycolic acid) (PLGA) microparticles encapsulating CdSe/ZnS quantum dots (QDs). A cross-flow design and flow-focusing system were employed to control the oil-in-water (o/w) emulsification to ensure the generation of uniformly-sized droplets. The size of the droplets could be tuned by adjusting the flow rates of the water and oil phases. The proposed microfluidic platform is easy to fabricate, set up, organize as well as program, and is valuable for further applications under harsh reaction conditions (high temperature and/or strong organic solvent systems). The proposed method has the advantages of actively controlling the droplet diameter, with a narrow size distribution, good sphericity, as well as being a simple process with a high throughput. In addition to the fluorescent PLGA microparticles in this study, this approach can also be applied to many applications in the pharmaceutical and biomedical area. |
format | Online Article Text |
id | pubmed-3304121 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-33041212012-03-21 An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation Lin, Yung-Sheng Yang, Chih-Hui Wang, Chih-Yu Chang, Fang-Rong Huang, Keng-Shiang Hsieh, Wan-Chen Sensors (Basel) Article This study presents the development of a robust aluminum-based microfluidic chip fabricated by conventional mechanical micromachining (computer numerical control-based micro-milling process). It applied the aluminum-based microfluidic chip to form poly(lactic-co-glycolic acid) (PLGA) microparticles encapsulating CdSe/ZnS quantum dots (QDs). A cross-flow design and flow-focusing system were employed to control the oil-in-water (o/w) emulsification to ensure the generation of uniformly-sized droplets. The size of the droplets could be tuned by adjusting the flow rates of the water and oil phases. The proposed microfluidic platform is easy to fabricate, set up, organize as well as program, and is valuable for further applications under harsh reaction conditions (high temperature and/or strong organic solvent systems). The proposed method has the advantages of actively controlling the droplet diameter, with a narrow size distribution, good sphericity, as well as being a simple process with a high throughput. In addition to the fluorescent PLGA microparticles in this study, this approach can also be applied to many applications in the pharmaceutical and biomedical area. Molecular Diversity Preservation International (MDPI) 2012-02-01 /pmc/articles/PMC3304121/ /pubmed/22438719 http://dx.doi.org/10.3390/s120201455 Text en © 2012 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Lin, Yung-Sheng Yang, Chih-Hui Wang, Chih-Yu Chang, Fang-Rong Huang, Keng-Shiang Hsieh, Wan-Chen An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation |
title | An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation |
title_full | An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation |
title_fullStr | An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation |
title_full_unstemmed | An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation |
title_short | An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation |
title_sort | aluminum microfluidic chip fabrication using a convenient micromilling process for fluorescent poly(dl-lactide-co-glycolide) microparticle generation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304121/ https://www.ncbi.nlm.nih.gov/pubmed/22438719 http://dx.doi.org/10.3390/s120201455 |
work_keys_str_mv | AT linyungsheng analuminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration AT yangchihhui analuminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration AT wangchihyu analuminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration AT changfangrong analuminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration AT huangkengshiang analuminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration AT hsiehwanchen analuminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration AT linyungsheng aluminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration AT yangchihhui aluminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration AT wangchihyu aluminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration AT changfangrong aluminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration AT huangkengshiang aluminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration AT hsiehwanchen aluminummicrofluidicchipfabricationusingaconvenientmicromillingprocessforfluorescentpolydllactidecoglycolidemicroparticlegeneration |