Cargando…
Transmission eigenvalue distributions in highly conductive molecular junctions
Background: The transport through a quantum-scale device may be uniquely characterized by its transmission eigenvalues τ(n). Recently, highly conductive single-molecule junctions (SMJ) with multiple transport channels (i.e., several τ(n) > 0) have been formed from benzene molecules between Pt ele...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304317/ https://www.ncbi.nlm.nih.gov/pubmed/22428095 http://dx.doi.org/10.3762/bjnano.3.5 |
_version_ | 1782226876238921728 |
---|---|
author | Bergfield, Justin P Barr, Joshua D Stafford, Charles A |
author_facet | Bergfield, Justin P Barr, Joshua D Stafford, Charles A |
author_sort | Bergfield, Justin P |
collection | PubMed |
description | Background: The transport through a quantum-scale device may be uniquely characterized by its transmission eigenvalues τ(n). Recently, highly conductive single-molecule junctions (SMJ) with multiple transport channels (i.e., several τ(n) > 0) have been formed from benzene molecules between Pt electrodes. Transport through these multichannel SMJs is a probe of both the bonding properties at the lead–molecule interface and of the molecular symmetry. Results: We use a many-body theory that properly describes the complementary wave–particle nature of the electron to investigate transport in an ensemble of Pt–benzene–Pt junctions. We utilize an effective-field theory of interacting π-electrons to accurately model the electrostatic influence of the leads, and we develop an ab initio tunneling model to describe the details of the lead–molecule bonding over an ensemble of junction geometries. We also develop a simple decomposition of transmission eigenchannels into molecular resonances based on the isolated resonance approximation, which helps to illustrate the workings of our many-body theory, and facilitates unambiguous interpretation of transmission spectra. Conclusion: We confirm that Pt–benzene–Pt junctions have two dominant transmission channels, with only a small contribution from a third channel with τ(n) << 1. In addition, we demonstrate that the isolated resonance approximation is extremely accurate and determine that transport occurs predominantly via the HOMO orbital in Pt–benzene–Pt junctions. Finally, we show that the transport occurs in a lead–molecule coupling regime where the charge carriers are both particle-like and wave-like simultaneously, requiring a many-body description. |
format | Online Article Text |
id | pubmed-3304317 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Beilstein-Institut |
record_format | MEDLINE/PubMed |
spelling | pubmed-33043172012-03-16 Transmission eigenvalue distributions in highly conductive molecular junctions Bergfield, Justin P Barr, Joshua D Stafford, Charles A Beilstein J Nanotechnol Full Research Paper Background: The transport through a quantum-scale device may be uniquely characterized by its transmission eigenvalues τ(n). Recently, highly conductive single-molecule junctions (SMJ) with multiple transport channels (i.e., several τ(n) > 0) have been formed from benzene molecules between Pt electrodes. Transport through these multichannel SMJs is a probe of both the bonding properties at the lead–molecule interface and of the molecular symmetry. Results: We use a many-body theory that properly describes the complementary wave–particle nature of the electron to investigate transport in an ensemble of Pt–benzene–Pt junctions. We utilize an effective-field theory of interacting π-electrons to accurately model the electrostatic influence of the leads, and we develop an ab initio tunneling model to describe the details of the lead–molecule bonding over an ensemble of junction geometries. We also develop a simple decomposition of transmission eigenchannels into molecular resonances based on the isolated resonance approximation, which helps to illustrate the workings of our many-body theory, and facilitates unambiguous interpretation of transmission spectra. Conclusion: We confirm that Pt–benzene–Pt junctions have two dominant transmission channels, with only a small contribution from a third channel with τ(n) << 1. In addition, we demonstrate that the isolated resonance approximation is extremely accurate and determine that transport occurs predominantly via the HOMO orbital in Pt–benzene–Pt junctions. Finally, we show that the transport occurs in a lead–molecule coupling regime where the charge carriers are both particle-like and wave-like simultaneously, requiring a many-body description. Beilstein-Institut 2012-01-16 /pmc/articles/PMC3304317/ /pubmed/22428095 http://dx.doi.org/10.3762/bjnano.3.5 Text en Copyright © 2012, Bergfield et al. https://creativecommons.org/licenses/by/2.0https://www.beilstein-journals.org/bjnano/termsThis is an Open Access article under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The license is subject to the Beilstein Journal of Nanotechnology terms and conditions: (https://www.beilstein-journals.org/bjnano/terms) |
spellingShingle | Full Research Paper Bergfield, Justin P Barr, Joshua D Stafford, Charles A Transmission eigenvalue distributions in highly conductive molecular junctions |
title | Transmission eigenvalue distributions in highly conductive molecular junctions |
title_full | Transmission eigenvalue distributions in highly conductive molecular junctions |
title_fullStr | Transmission eigenvalue distributions in highly conductive molecular junctions |
title_full_unstemmed | Transmission eigenvalue distributions in highly conductive molecular junctions |
title_short | Transmission eigenvalue distributions in highly conductive molecular junctions |
title_sort | transmission eigenvalue distributions in highly conductive molecular junctions |
topic | Full Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3304317/ https://www.ncbi.nlm.nih.gov/pubmed/22428095 http://dx.doi.org/10.3762/bjnano.3.5 |
work_keys_str_mv | AT bergfieldjustinp transmissioneigenvaluedistributionsinhighlyconductivemolecularjunctions AT barrjoshuad transmissioneigenvaluedistributionsinhighlyconductivemolecularjunctions AT staffordcharlesa transmissioneigenvaluedistributionsinhighlyconductivemolecularjunctions |