Cargando…

Pulmonary endarterectomy normalizes interventricular dyssynchrony and right ventricular systolic wall stress

BACKGROUND: Interventricular mechanical dyssynchrony is a characteristic of pulmonary hypertension. We studied the role of right ventricular (RV) wall stress in the recovery of interventricular dyssynchrony, after pulmonary endarterectomy (PEA) in chronic thromboembolic pulmonary hypertension (CTEPH...

Descripción completa

Detalles Bibliográficos
Autores principales: Mauritz, Gert-Jan, Vonk-Noordegraaf, Anton, Kind, Taco, Surie, Sulaiman, Kloek, Jaap J, Bresser, Paul, Saouti, Nabil, Bosboom, Joachim, Westerhof, Nico, Marcus, J Tim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305662/
https://www.ncbi.nlm.nih.gov/pubmed/22240072
http://dx.doi.org/10.1186/1532-429X-14-5
Descripción
Sumario:BACKGROUND: Interventricular mechanical dyssynchrony is a characteristic of pulmonary hypertension. We studied the role of right ventricular (RV) wall stress in the recovery of interventricular dyssynchrony, after pulmonary endarterectomy (PEA) in chronic thromboembolic pulmonary hypertension (CTEPH). METHODS: In 13 consecutive patients with CTEPH, before and 6 months after pulmonary endarterectomy, cardiovascular magnetic resonance myocardial tagging was applied. For the left ventricular (LV) and RV free walls, the time to peak (Tpeak) of circumferential shortening (strain) was calculated. Pulmonary Artery Pressure (PAP) was measured by right heart catheterization within 48 hours of PEA. Then the RV free wall systolic wall stress was calculated by the Laplace law. RESULTS: After PEA, the left to right free wall delay (L-R delay) in Tpeak strain decreased from 97 ± 49 ms to -4 ± 51 ms (P < 0.001), which was not different from normal reference values of -35 ± 10 ms (P = 0.18). The RV wall stress decreased significantly from 15.2 ± 6.4 kPa to 5.7 ± 3.4 kPa (P < 0.001), which was not different from normal reference values of 5.3 ± 1.39 kPa (P = 0.78). The reduction of L-R delay in Tpeak was more strongly associated with the reduction in RV wall stress (r = 0.69,P = 0.007) than with the reduction in systolic PAP (r = 0.53, P = 0.07). The reduction of L-R delay in Tpeak was not associated with estimates of the reduction in RV radius (r = 0.37,P = 0.21) or increase in RV systolic wall thickness (r = 0.19,P = 0.53). CONCLUSION: After PEA for CTEPH, the RV and LV peak strains are resynchronized. The reduction in systolic RV wall stress plays a key role in this resynchronization.