Cargando…
Predicting glioblastoma prognosis networks using weighted gene co-expression network analysis on TCGA data
BACKGROUND: Using gene co-expression analysis, researchers were able to predict clusters of genes with consistent functions that are relevant to cancer development and prognosis. We applied a weighted gene co-expression network (WGCN) analysis algorithm on glioblastoma multiforme (GBM) data obtained...
Autores principales: | Xiang, Yang, Zhang, Cun-Quan, Huang, Kun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3305748/ https://www.ncbi.nlm.nih.gov/pubmed/22536863 http://dx.doi.org/10.1186/1471-2105-13-S2-S12 |
Ejemplares similares
-
Using gene co-expression network analysis to predict biomarkers for chronic lymphocytic leukemia
por: Zhang, Jie, et al.
Publicado: (2010) -
Detection of gene orthology from gene co-expression and protein interaction networks
por: Towfic, Fadi, et al.
Publicado: (2010) -
Supervised maximum-likelihood weighting of composite protein networks for complex prediction
por: Yong, Chern Han, et al.
Publicado: (2012) -
Identification of glioblastoma gene prognosis modules based on weighted gene co-expression network analysis
por: Xu, Pengfei, et al.
Publicado: (2018) -
Threshold selection in gene co-expression networks using spectral graph theory techniques
por: Perkins, Andy D, et al.
Publicado: (2009)