Cargando…

Both FA- and mPEG-conjugated chitosan nanoparticles for targeted cellular uptake and enhanced tumor tissue distribution

Both folic acid (FA)- and methoxypoly(ethylene glycol) (mPEG)-conjugated chitosan nanoparticles (NPs) had been designed for targeted and prolong anticancer drug delivery system. The chitosan NPs were prepared with combination of ionic gelation and chemical cross-linking method, followed by conjugati...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Zhenqing, Zhan, Chuanming, Jiang, Qiwei, Hu, Quan, Li, Le, Chang, Di, Yang, Xiangrui, Wang, Yixiao, Li, Yang, Ye, Shefang, Xie, Liya, Yi, Yunfeng, Zhang, Qiqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306018/
https://www.ncbi.nlm.nih.gov/pubmed/22027239
http://dx.doi.org/10.1186/1556-276X-6-563
Descripción
Sumario:Both folic acid (FA)- and methoxypoly(ethylene glycol) (mPEG)-conjugated chitosan nanoparticles (NPs) had been designed for targeted and prolong anticancer drug delivery system. The chitosan NPs were prepared with combination of ionic gelation and chemical cross-linking method, followed by conjugation with both FA and mPEG, respectively. FA-mPEG-NPs were compared with either NPs or mPEG-/FA-NPs in terms of their size, targeting cellular efficiency and tumor tissue distribution. The specificity of the mPEG-FA-NPs targeting cancerous cells was demonstrated by comparative intracellular uptake of NPs and mPEG-/FA-NPs by human adenocarcinoma HeLa cells. Mitomycin C (MMC), as a model drug, was loaded to the mPEG-FA-NPs. Results show that the chitosan NPs presented a narrow-size distribution with an average diameter about 200 nm regardless of the type of functional group. In addition, MMC was easily loaded to the mPEG-FA-NPs with drug-loading content of 9.1%, and the drug releases were biphasic with an initial burst release, followed by a subsequent slower release. Laser confocal scanning imaging proved that both mPEG-FA-NPs and FA-NPs could greatly enhance uptake by HeLa cells. In vivo animal experiments, using a nude mice xenograft model, demonstrated that an increased amount of mPEG-FA-NPs or FA-NPs were accumulated in the tumor tissue relative to the mPEG-NPs or NPs alone. These results suggest that both FA- and mPEG-conjugated chitosan NPs are potentially prolonged drug delivery system for tumor cell-selective targeting treatments.