Cargando…
Prediction of Promiscuous P-Glycoprotein Inhibition Using a Novel Machine Learning Scheme
BACKGROUND: P-glycoprotein (P-gp) is an ATP-dependent membrane transporter that plays a pivotal role in eliminating xenobiotics by active extrusion of xenobiotics from the cell. Multidrug resistance (MDR) is highly associated with the over-expression of P-gp by cells, resulting in increased efflux o...
Autores principales: | Leong, Max K., Chen, Hong-Bin, Shih, Yu-Hsuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306300/ https://www.ncbi.nlm.nih.gov/pubmed/22439003 http://dx.doi.org/10.1371/journal.pone.0033829 |
Ejemplares similares
-
In Silico Prediction of Inhibition of Promiscuous Breast Cancer Resistance Protein (BCRP/ABCG2)
por: Ding, Yi-Lung, et al.
Publicado: (2014) -
Theoretical Prediction of the Complex P-Glycoprotein Substrate Efflux Based on the Novel Hierarchical Support Vector Regression Scheme
por: Chen, Chun, et al.
Publicado: (2018) -
Prediction of Promiscuity Cliffs Using Machine Learning
por: Blaschke, Thomas, et al.
Publicado: (2020) -
Theoretical insights on helix repacking as the origin of P-glycoprotein promiscuity
por: Bonito, Cátia A., et al.
Publicado: (2020) -
Machine learning reveals that structural features distinguishing promiscuous and non-promiscuous compounds depend on target combinations
por: Feldmann, Christian, et al.
Publicado: (2021)