Cargando…
Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture
INTRODUCTION: XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306368/ https://www.ncbi.nlm.nih.gov/pubmed/22438885 http://dx.doi.org/10.1371/journal.pone.0032853 |
_version_ | 1782227211455037440 |
---|---|
author | Mohan, Ketha V. K. Devadas, Krishnakumar Sainath Rao, Shilpakala Hewlett, Indira Atreya, Chintamani |
author_facet | Mohan, Ketha V. K. Devadas, Krishnakumar Sainath Rao, Shilpakala Hewlett, Indira Atreya, Chintamani |
author_sort | Mohan, Ketha V. K. |
collection | PubMed |
description | INTRODUCTION: XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture. METHODS: Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray. RESULTS: MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs). miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types. DISCUSSION: The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types. |
format | Online Article Text |
id | pubmed-3306368 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33063682012-03-21 Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture Mohan, Ketha V. K. Devadas, Krishnakumar Sainath Rao, Shilpakala Hewlett, Indira Atreya, Chintamani PLoS One Research Article INTRODUCTION: XMRV is a gammaretrovirus that was thought to be associated with prostate cancer (PC) and chronic fatigue syndrome (CFS) in humans until recently. The virus is culturable in various cells of human origin like the lymphocytes, NK cells, neuronal cells, and prostate cell lines. MicroRNAs (miRNA), which regulate gene expression, were so far not identified in cells infected with XMRV in culture. METHODS: Two prostate cell lines (LNCaP and DU145) and two primary cells, Peripheral Blood Lymphocytes [PBL] and Monocyte-derived Macrophages [MDM] were infected with XMRV. Total mRNA was extracted from mock- and virus-infected cells at 6, 24 and 48 hours post infection and evaluated for microRNA profile in a microarray. RESULTS: MicroRNA expression profiles of XMRV-infected continuous prostate cancer cell lines differ from that of virus-infected primary cells (PBL and MDMs). miR-193a-3p and miRPlus-E1245 observed to be specific to XMRV infection in all 4 cell types. While miR-193a-3p levels were down regulated miRPlus-E1245 on the other hand exhibited varied expression profile between the 4 cell types. DISCUSSION: The present study clearly demonstrates that cellular microRNAs are expressed during XMRV infection of human cells and this is the first report demonstrating the regulation of miR193a-3p and miRPlus-E1245 during XMRV infection in four different human cell types. Public Library of Science 2012-03-16 /pmc/articles/PMC3306368/ /pubmed/22438885 http://dx.doi.org/10.1371/journal.pone.0032853 Text en This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. |
spellingShingle | Research Article Mohan, Ketha V. K. Devadas, Krishnakumar Sainath Rao, Shilpakala Hewlett, Indira Atreya, Chintamani Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture |
title | Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture |
title_full | Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture |
title_fullStr | Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture |
title_full_unstemmed | Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture |
title_short | Identification of XMRV Infection-Associated microRNAs in Four Cell Types in Culture |
title_sort | identification of xmrv infection-associated micrornas in four cell types in culture |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306368/ https://www.ncbi.nlm.nih.gov/pubmed/22438885 http://dx.doi.org/10.1371/journal.pone.0032853 |
work_keys_str_mv | AT mohankethavk identificationofxmrvinfectionassociatedmicrornasinfourcelltypesinculture AT devadaskrishnakumar identificationofxmrvinfectionassociatedmicrornasinfourcelltypesinculture AT sainathraoshilpakala identificationofxmrvinfectionassociatedmicrornasinfourcelltypesinculture AT hewlettindira identificationofxmrvinfectionassociatedmicrornasinfourcelltypesinculture AT atreyachintamani identificationofxmrvinfectionassociatedmicrornasinfourcelltypesinculture |