Cargando…
Prediction and characterization of protein-protein interaction networks in swine
BACKGROUND: Studying the large-scale protein-protein interaction (PPI) network is important in understanding biological processes. The current research presents the first PPI map of swine, which aims to give new insights into understanding their biological processes. RESULTS: We used three methods,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306829/ https://www.ncbi.nlm.nih.gov/pubmed/22230699 http://dx.doi.org/10.1186/1477-5956-10-2 |
_version_ | 1782227246173388800 |
---|---|
author | Wang, Fen Liu, Min Song, Baoxing Li, Dengyun Pei, Huimin Guo, Yang Huang, Jingfei Zhang, Deli |
author_facet | Wang, Fen Liu, Min Song, Baoxing Li, Dengyun Pei, Huimin Guo, Yang Huang, Jingfei Zhang, Deli |
author_sort | Wang, Fen |
collection | PubMed |
description | BACKGROUND: Studying the large-scale protein-protein interaction (PPI) network is important in understanding biological processes. The current research presents the first PPI map of swine, which aims to give new insights into understanding their biological processes. RESULTS: We used three methods, Interolog-based prediction of porcine PPI network, domain-motif interactions from structural topology-based prediction of porcine PPI network and motif-motif interactions from structural topology-based prediction of porcine PPI network, to predict porcine protein interactions among 25,767 porcine proteins. We predicted 20,213, 331,484, and 218,705 porcine PPIs respectively, merged the three results into 567,441 PPIs, constructed four PPI networks, and analyzed the topological properties of the porcine PPI networks. Our predictions were validated with Pfam domain annotations and GO annotations. Averages of 70, 10,495, and 863 interactions were related to the Pfam domain-interacting pairs in iPfam database. For comparison, randomized networks were generated, and averages of only 4.24, 66.79, and 44.26 interactions were associated with Pfam domain-interacting pairs in iPfam database. In GO annotations, we found 52.68%, 75.54%, 27.20% of the predicted PPIs sharing GO terms respectively. However, the number of PPI pairs sharing GO terms in the 10,000 randomized networks reached 52.68%, 75.54%, 27.20% is 0. Finally, we determined the accuracy and precision of the methods. The methods yielded accuracies of 0.92, 0.53, and 0.50 at precisions of about 0.93, 0.74, and 0.75, respectively. CONCLUSION: The results reveal that the predicted PPI networks are considerably reliable. The present research is an important pioneering work on protein function research. The porcine PPI data set, the confidence score of each interaction and a list of related data are available at (http://pppid.biositemap.com/). |
format | Online Article Text |
id | pubmed-3306829 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-33068292012-03-19 Prediction and characterization of protein-protein interaction networks in swine Wang, Fen Liu, Min Song, Baoxing Li, Dengyun Pei, Huimin Guo, Yang Huang, Jingfei Zhang, Deli Proteome Sci Research BACKGROUND: Studying the large-scale protein-protein interaction (PPI) network is important in understanding biological processes. The current research presents the first PPI map of swine, which aims to give new insights into understanding their biological processes. RESULTS: We used three methods, Interolog-based prediction of porcine PPI network, domain-motif interactions from structural topology-based prediction of porcine PPI network and motif-motif interactions from structural topology-based prediction of porcine PPI network, to predict porcine protein interactions among 25,767 porcine proteins. We predicted 20,213, 331,484, and 218,705 porcine PPIs respectively, merged the three results into 567,441 PPIs, constructed four PPI networks, and analyzed the topological properties of the porcine PPI networks. Our predictions were validated with Pfam domain annotations and GO annotations. Averages of 70, 10,495, and 863 interactions were related to the Pfam domain-interacting pairs in iPfam database. For comparison, randomized networks were generated, and averages of only 4.24, 66.79, and 44.26 interactions were associated with Pfam domain-interacting pairs in iPfam database. In GO annotations, we found 52.68%, 75.54%, 27.20% of the predicted PPIs sharing GO terms respectively. However, the number of PPI pairs sharing GO terms in the 10,000 randomized networks reached 52.68%, 75.54%, 27.20% is 0. Finally, we determined the accuracy and precision of the methods. The methods yielded accuracies of 0.92, 0.53, and 0.50 at precisions of about 0.93, 0.74, and 0.75, respectively. CONCLUSION: The results reveal that the predicted PPI networks are considerably reliable. The present research is an important pioneering work on protein function research. The porcine PPI data set, the confidence score of each interaction and a list of related data are available at (http://pppid.biositemap.com/). BioMed Central 2012-01-10 /pmc/articles/PMC3306829/ /pubmed/22230699 http://dx.doi.org/10.1186/1477-5956-10-2 Text en Copyright ©2012 Wang et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Wang, Fen Liu, Min Song, Baoxing Li, Dengyun Pei, Huimin Guo, Yang Huang, Jingfei Zhang, Deli Prediction and characterization of protein-protein interaction networks in swine |
title | Prediction and characterization of protein-protein interaction networks in swine |
title_full | Prediction and characterization of protein-protein interaction networks in swine |
title_fullStr | Prediction and characterization of protein-protein interaction networks in swine |
title_full_unstemmed | Prediction and characterization of protein-protein interaction networks in swine |
title_short | Prediction and characterization of protein-protein interaction networks in swine |
title_sort | prediction and characterization of protein-protein interaction networks in swine |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306829/ https://www.ncbi.nlm.nih.gov/pubmed/22230699 http://dx.doi.org/10.1186/1477-5956-10-2 |
work_keys_str_mv | AT wangfen predictionandcharacterizationofproteinproteininteractionnetworksinswine AT liumin predictionandcharacterizationofproteinproteininteractionnetworksinswine AT songbaoxing predictionandcharacterizationofproteinproteininteractionnetworksinswine AT lidengyun predictionandcharacterizationofproteinproteininteractionnetworksinswine AT peihuimin predictionandcharacterizationofproteinproteininteractionnetworksinswine AT guoyang predictionandcharacterizationofproteinproteininteractionnetworksinswine AT huangjingfei predictionandcharacterizationofproteinproteininteractionnetworksinswine AT zhangdeli predictionandcharacterizationofproteinproteininteractionnetworksinswine |