Cargando…
Assessing statistical significance in causal graphs
BACKGROUND: Causal graphs are an increasingly popular tool for the analysis of biological datasets. In particular, signed causal graphs--directed graphs whose edges additionally have a sign denoting upregulation or downregulation--can be used to model regulatory networks within a cell. Such models a...
Autores principales: | Chindelevitch, Leonid, Loh, Po-Ru, Enayetallah, Ahmed, Berger, Bonnie, Ziemek, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307026/ https://www.ncbi.nlm.nih.gov/pubmed/22348444 http://dx.doi.org/10.1186/1471-2105-13-35 |
Ejemplares similares
-
Correlation set analysis: detecting active regulators in disease populations using prior causal knowledge
por: Huang, Chia-Ling, et al.
Publicado: (2012) -
Robust clinical outcome prediction based on Bayesian analysis of transcriptional profiles and prior causal networks
por: Zarringhalam, Kourosh, et al.
Publicado: (2014) -
Assessing the translatability of In vivo cardiotoxicity mechanisms to In vitro models using causal reasoning
por: Enayetallah, Ahmed E, et al.
Publicado: (2013) -
Aristotle: stratified causal discovery for omics data
por: Mansouri, Mehrdad, et al.
Publicado: (2022) -
A sampling framework for incorporating quantitative mass spectrometry data in protein interaction analysis
por: Tucker, George, et al.
Publicado: (2013)