Cargando…
How useful are delta checks in the 21(st) century? A stochastic-dynamic model of specimen mix-up and detection
INTRODUCTION: Delta checks use two specimen test results taken in succession in order to detect test result changes greater than expected physiological variation. One of the most common and serious errors detected by delta checks is specimen mix-up errors. The positive and negative predictive values...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307229/ https://www.ncbi.nlm.nih.gov/pubmed/22439125 http://dx.doi.org/10.4103/2153-3539.93402 |
_version_ | 1782227306443440128 |
---|---|
author | Ovens, Katie Naugler, Christopher |
author_facet | Ovens, Katie Naugler, Christopher |
author_sort | Ovens, Katie |
collection | PubMed |
description | INTRODUCTION: Delta checks use two specimen test results taken in succession in order to detect test result changes greater than expected physiological variation. One of the most common and serious errors detected by delta checks is specimen mix-up errors. The positive and negative predictive values of delta checks for detecting specimen mix-up errors, however, are largely unknown. MATERIALS AND METHODS: We addressed this question by first constructing a stochastic dynamic model using repeat test values for five analytes from approximately 8000 inpatients in Calgary, Alberta, Canada. The analytes examined were sodium, potassium, chloride, bicarbonate, and creatinine. The model simulated specimen mix-up errors by randomly switching a set number of pairs of second test results. Sensitivities and specificities were then calculated for each analyte for six combinations of delta check equations and cut-off values from the published literature. RESULTS: Delta check specificities obtained from this model ranged from 50% to 99%; however the sensitivities were generally below 20% with the exception of creatinine for which the best performing delta check had a sensitivity of 82.8%. Within a plausible incidence range of specimen mix-ups the positive predictive values of even the best performing delta check equation and analyte became negligible. CONCLUSION: This finding casts doubt on the ongoing clinical utility of delta checks in the setting of low rates of specimen mix-ups. |
format | Online Article Text |
id | pubmed-3307229 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-33072292012-03-21 How useful are delta checks in the 21(st) century? A stochastic-dynamic model of specimen mix-up and detection Ovens, Katie Naugler, Christopher J Pathol Inform Original Article INTRODUCTION: Delta checks use two specimen test results taken in succession in order to detect test result changes greater than expected physiological variation. One of the most common and serious errors detected by delta checks is specimen mix-up errors. The positive and negative predictive values of delta checks for detecting specimen mix-up errors, however, are largely unknown. MATERIALS AND METHODS: We addressed this question by first constructing a stochastic dynamic model using repeat test values for five analytes from approximately 8000 inpatients in Calgary, Alberta, Canada. The analytes examined were sodium, potassium, chloride, bicarbonate, and creatinine. The model simulated specimen mix-up errors by randomly switching a set number of pairs of second test results. Sensitivities and specificities were then calculated for each analyte for six combinations of delta check equations and cut-off values from the published literature. RESULTS: Delta check specificities obtained from this model ranged from 50% to 99%; however the sensitivities were generally below 20% with the exception of creatinine for which the best performing delta check had a sensitivity of 82.8%. Within a plausible incidence range of specimen mix-ups the positive predictive values of even the best performing delta check equation and analyte became negligible. CONCLUSION: This finding casts doubt on the ongoing clinical utility of delta checks in the setting of low rates of specimen mix-ups. Medknow Publications & Media Pvt Ltd 2012-02-29 /pmc/articles/PMC3307229/ /pubmed/22439125 http://dx.doi.org/10.4103/2153-3539.93402 Text en Copyright: © 2012 Ovens K http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Original Article Ovens, Katie Naugler, Christopher How useful are delta checks in the 21(st) century? A stochastic-dynamic model of specimen mix-up and detection |
title | How useful are delta checks in the 21(st) century? A stochastic-dynamic model of specimen mix-up and detection |
title_full | How useful are delta checks in the 21(st) century? A stochastic-dynamic model of specimen mix-up and detection |
title_fullStr | How useful are delta checks in the 21(st) century? A stochastic-dynamic model of specimen mix-up and detection |
title_full_unstemmed | How useful are delta checks in the 21(st) century? A stochastic-dynamic model of specimen mix-up and detection |
title_short | How useful are delta checks in the 21(st) century? A stochastic-dynamic model of specimen mix-up and detection |
title_sort | how useful are delta checks in the 21(st) century? a stochastic-dynamic model of specimen mix-up and detection |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307229/ https://www.ncbi.nlm.nih.gov/pubmed/22439125 http://dx.doi.org/10.4103/2153-3539.93402 |
work_keys_str_mv | AT ovenskatie howusefularedeltachecksinthe21stcenturyastochasticdynamicmodelofspecimenmixupanddetection AT nauglerchristopher howusefularedeltachecksinthe21stcenturyastochasticdynamicmodelofspecimenmixupanddetection |