Cargando…

PLGA Nanoparticles for Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors: A Novel Approach towards Reduction of Renal Radiation Dose

BACKGROUND: Peptide receptor radionuclide therapy (PRRT), employed for treatment of neuroendocrine tumors (NETs) is based on over-expression of Somatostatin Receptors (SSTRs) on NETs. It is, however, limited by high uptake and retention of radiolabeled peptide in kidneys resulting in unnecessary rad...

Descripción completa

Detalles Bibliográficos
Autores principales: Arora, Geetanjali, Shukla, Jaya, Ghosh, Sourabh, Maulik, Subir Kumar, Malhotra, Arun, Bandopadhyaya, Gurupad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3307778/
https://www.ncbi.nlm.nih.gov/pubmed/22442740
http://dx.doi.org/10.1371/journal.pone.0034019
Descripción
Sumario:BACKGROUND: Peptide receptor radionuclide therapy (PRRT), employed for treatment of neuroendocrine tumors (NETs) is based on over-expression of Somatostatin Receptors (SSTRs) on NETs. It is, however, limited by high uptake and retention of radiolabeled peptide in kidneys resulting in unnecessary radiation exposure thus causing nephrotoxicity. Employing a nanocarrier to deliver PRRT drugs specifically to the tumor can reduce the associated nephrotoxicity. Based on this, (177)Lu-DOTATATE loaded PLGA nanoparticles (NPs) were formulated in the present study, as a potential therapeutic model for NETs. METHODOLOGY AND FINDINGS: DOTATATE was labeled with Lutetium-177 ((177)Lu) (labeling efficiency 98%; R(f)∼0.8). Polyethylene Glycol (PEG) coated (177)Lu-DOTATATE-PLGA NPs (50∶50 and 75∶25) formulated, were spherical with mean size of 304.5±80.8 and 733.4±101.3 nm (uncoated) and 303.8±67.2 and 494.3±71.8 nm (coated) for PLGA(50∶50) and PLGA(75∶25) respectively. Encapsulation efficiency (EE) and In-vitro release kinetics for uncoated and coated NPs of PLGA (50∶50 & 75∶25) were assessed and compared. Mean EE was 77.375±4.98% & 67.885±5.12% (uncoated) and 65.385±5.67% & 58.495±5.35% (coated). NPs showed initial burst release between 16.64–21.65% with total 42.83–44.79% over 21days. The release increased with coating to 20.4–23.95% initially and 60.97–69.12% over 21days. In-vivo studies were done in rats injected with (177)Lu-DOTATATE and (177)Lu-DOTATATE-NP (uncoated and PEG-coated) by imaging and organ counting after sacrificing rats at different time points over 24 hr post-injection. With (177)Lu-DOTATATE, renal uptake of 37.89±10.2%ID/g was observed, which reduced to 4.6±1.97% and 5.27±1.66%ID/g with uncoated and coated (177)Lu-DOTATATE-NP. The high liver uptake with uncoated (177)Lu-DOTATATE-NP (13.68±3.08% ID/g), reduced to 7.20±2.04%ID/g (p = 0.02) with PEG coating. CONCLUSION: PLGA NPs were easily formulated and modified for desired release properties. PLGA 50∶50 NPs were a more suitable delivery vehicle for (177)Lu-DOTATATE than PLGA 75∶25 because of higher EE and slower release rate. Reduced renal retention of (177)Lu-DOTATATE and reduced opsonisation strongly advocate the potential of (177)Lu-DOTATATE-PLGA-PEG NPs to reduce radiation dose in PRRT.