Cargando…

Kinetic Equivalence of Transmembrane pH and Electrical Potential Differences in ATP Synthesis

ATP synthase is the key player of Mitchell's chemiosmotic theory, converting the energy of transmembrane proton flow into the high energy bond between ADP and phosphate. The proton motive force that drives this reaction consists of two components, the pH difference (ΔpH) across the membrane and...

Descripción completa

Detalles Bibliográficos
Autores principales: Soga, Naoki, Kinosita, Kazuhiko, Yoshida, Masasuke, Suzuki, Toshiharu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308813/
https://www.ncbi.nlm.nih.gov/pubmed/22253434
http://dx.doi.org/10.1074/jbc.M111.335356
Descripción
Sumario:ATP synthase is the key player of Mitchell's chemiosmotic theory, converting the energy of transmembrane proton flow into the high energy bond between ADP and phosphate. The proton motive force that drives this reaction consists of two components, the pH difference (ΔpH) across the membrane and transmembrane electrical potential (Δψ). The two are considered thermodynamically equivalent, but kinetic equivalence in the actual ATP synthesis is not warranted, and previous experimental results vary. Here, we show that with the thermophilic Bacillus PS3 ATP synthase that lacks an inhibitory domain of the ϵ subunit, ΔpH imposed by acid-base transition and Δψ produced by valinomycin-mediated K(+) diffusion potential contribute equally to the rate of ATP synthesis within the experimental range examined (ΔpH −0.3 to 2.2, Δψ −30 to 140 mV, pH around the catalytic domain 8.0). Either ΔpH or Δψ alone can drive synthesis, even when the other slightly opposes. Δψ was estimated from the Nernst equation, which appeared valid down to 1 mm K(+) inside the proteoliposomes, due to careful removal of K(+) from the lipid.