Cargando…

Multiple Tyrosine Residues Contribute to GABA Binding in the GABA(C) Receptor Binding Pocket

[Image: see text] The ligand binding site of Cys-loop receptors is dominated by aromatic amino acids. In GABA(C) receptors, these are predominantly tyrosine residues, with a number of other aromatic residues located in or close to the binding pocket. Here we examine the roles of these residues using...

Descripción completa

Detalles Bibliográficos
Autores principales: Lummis, Sarah C. R., Harrison, Neil J., Wang, Jinti, Ashby, Jamie A., Millen, Katherine S., Beene, Darren L., Dougherty, Dennis A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2011
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3309607/
https://www.ncbi.nlm.nih.gov/pubmed/22448304
http://dx.doi.org/10.1021/cn200103n
Descripción
Sumario:[Image: see text] The ligand binding site of Cys-loop receptors is dominated by aromatic amino acids. In GABA(C) receptors, these are predominantly tyrosine residues, with a number of other aromatic residues located in or close to the binding pocket. Here we examine the roles of these residues using substitution with both natural and unnatural amino acids followed by functional characterization. Tyr198 (loop B) has previously been shown to form a cation−π interaction with GABA; the current data indicate that none of the other aromatic residues form such an interaction, although the data indicate that both Tyr102 and Phe138 may contribute to stabilization of the positively charged amine of GABA. Tyr247 (loop C) was very sensitive to substitution and, combined with data from a model of the receptor, suggest a π–π interaction with Tyr241 (loop C); here again functional data show aromaticity is important. In addition the hydroxyl group of Tyr241 is important, supporting the presence of a hydrogen bond with Arg104 suggested by the model. At position Tyr102 (loop D) size and aromaticity are important; this residue may play a role in receptor gating and/or ligand binding. The data also suggest that Tyr167, Tyr200, and Tyr208 have a structural role while Tyr106, Trp246, and Tyr251 are not critical. Comparison of the agonist binding site “aromatic box” across the superfamily of Cys-loop receptors reveals some interesting parallels and divergences.