Cargando…
In Vivo Determination of Organellar pH Using a Universal Wavelength-Based Confocal Microscopy Approach
Many essential cellular processes are affected by transmembrane H(+) gradients and intracellular pH (pHi). The research of such metabolic events calls for a non-invasive method to monitor pHi within individual subcellular compartments. We present a novel confocal microscopy approach for the determin...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310042/ https://www.ncbi.nlm.nih.gov/pubmed/22470445 http://dx.doi.org/10.1371/journal.pone.0033229 |
Sumario: | Many essential cellular processes are affected by transmembrane H(+) gradients and intracellular pH (pHi). The research of such metabolic events calls for a non-invasive method to monitor pHi within individual subcellular compartments. We present a novel confocal microscopy approach for the determination of organellar pHi in living cells expressing pH-dependent ratiometric fluorescent proteins. Unlike conventional intensity-based fluorometry, our method relies on emission wavelength scans at single-organelle resolution to produce wavelength-based pH estimates both accurate and robust to low-signal artifacts. Analyses of Ato1p-pHluorin and Ato1p-mCherry yeast cells revealed previously unreported wavelength shifts in pHluorin emission which, together with ratiometric mCherry, allowed for high-precision quantification of actual physiological pH values and evidenced dynamic pHi changes throughout the different stages of yeast colony development. Additionally, comparative pH quantification of Ato1p-pHluorin and Met17p-pHluorin cells implied the existence of a significant pHi gradient between peripheral and internal cytoplasm of cells from colonies occurring in the ammonia-producing alkali developmental phase. Results represent a step forward in the study of pHi regulation and subcellular metabolic functions beyond the scope of this study. |
---|