Cargando…
Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach
Exchange mechanisms across the blood–cerebrospinal fluid (CSF) barrier in the choroid plexuses within the cerebral ventricles control access of molecules to the central nervous system, especially in early development when the brain is poorly vascularised. However, little is known about their molecul...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310074/ https://www.ncbi.nlm.nih.gov/pubmed/22457777 http://dx.doi.org/10.1371/journal.pone.0033554 |
_version_ | 1782227603602538496 |
---|---|
author | Liddelow, Shane A. Temple, Sally Møllgård, Kjeld Gehwolf, Renate Wagner, Andrea Bauer, Hannelore Bauer, Hans-Christian Phoenix, Timothy N. Dziegielewska, Katarzyna M. Saunders, Norman R. |
author_facet | Liddelow, Shane A. Temple, Sally Møllgård, Kjeld Gehwolf, Renate Wagner, Andrea Bauer, Hannelore Bauer, Hans-Christian Phoenix, Timothy N. Dziegielewska, Katarzyna M. Saunders, Norman R. |
author_sort | Liddelow, Shane A. |
collection | PubMed |
description | Exchange mechanisms across the blood–cerebrospinal fluid (CSF) barrier in the choroid plexuses within the cerebral ventricles control access of molecules to the central nervous system, especially in early development when the brain is poorly vascularised. However, little is known about their molecular or developmental characteristics. We examined the transcriptome of lateral ventricular choroid plexus in embryonic day 15 (E15) and adult mice. Numerous genes identified in the adult were expressed at similar levels at E15, indicating substantial plexus maturity early in development. Some genes coding for key functions (intercellular/tight junctions, influx/efflux transporters) changed expression during development and their expression patterns are discussed in the context of available physiological/permeability results in the developing brain. Three genes: Secreted protein acidic and rich in cysteine (Sparc), Glycophorin A (Gypa) and C (Gypc), were identified as those whose gene products are candidates to target plasma proteins to choroid plexus cells. These were investigated using quantitative- and single-cell-PCR on plexus epithelial cells that were albumin- or total plasma protein-immunopositive. Results showed a significant degree of concordance between plasma protein/albumin immunoreactivity and expression of the putative transporters. Immunohistochemistry identified SPARC and GYPA in choroid plexus epithelial cells in the embryo with a subcellular distribution that was consistent with transport of albumin from blood to cerebrospinal fluid. In adult plexus this pattern of immunostaining was absent. We propose a model of the cellular mechanism in which SPARC and GYPA, together with identified vesicle-associated membrane proteins (VAMPs) may act as receptors/transporters in developmentally regulated transfer of plasma proteins at the blood–CSF interface. |
format | Online Article Text |
id | pubmed-3310074 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33100742012-03-28 Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach Liddelow, Shane A. Temple, Sally Møllgård, Kjeld Gehwolf, Renate Wagner, Andrea Bauer, Hannelore Bauer, Hans-Christian Phoenix, Timothy N. Dziegielewska, Katarzyna M. Saunders, Norman R. PLoS One Research Article Exchange mechanisms across the blood–cerebrospinal fluid (CSF) barrier in the choroid plexuses within the cerebral ventricles control access of molecules to the central nervous system, especially in early development when the brain is poorly vascularised. However, little is known about their molecular or developmental characteristics. We examined the transcriptome of lateral ventricular choroid plexus in embryonic day 15 (E15) and adult mice. Numerous genes identified in the adult were expressed at similar levels at E15, indicating substantial plexus maturity early in development. Some genes coding for key functions (intercellular/tight junctions, influx/efflux transporters) changed expression during development and their expression patterns are discussed in the context of available physiological/permeability results in the developing brain. Three genes: Secreted protein acidic and rich in cysteine (Sparc), Glycophorin A (Gypa) and C (Gypc), were identified as those whose gene products are candidates to target plasma proteins to choroid plexus cells. These were investigated using quantitative- and single-cell-PCR on plexus epithelial cells that were albumin- or total plasma protein-immunopositive. Results showed a significant degree of concordance between plasma protein/albumin immunoreactivity and expression of the putative transporters. Immunohistochemistry identified SPARC and GYPA in choroid plexus epithelial cells in the embryo with a subcellular distribution that was consistent with transport of albumin from blood to cerebrospinal fluid. In adult plexus this pattern of immunostaining was absent. We propose a model of the cellular mechanism in which SPARC and GYPA, together with identified vesicle-associated membrane proteins (VAMPs) may act as receptors/transporters in developmentally regulated transfer of plasma proteins at the blood–CSF interface. Public Library of Science 2012-03-21 /pmc/articles/PMC3310074/ /pubmed/22457777 http://dx.doi.org/10.1371/journal.pone.0033554 Text en Liddelow et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Liddelow, Shane A. Temple, Sally Møllgård, Kjeld Gehwolf, Renate Wagner, Andrea Bauer, Hannelore Bauer, Hans-Christian Phoenix, Timothy N. Dziegielewska, Katarzyna M. Saunders, Norman R. Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach |
title | Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach |
title_full | Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach |
title_fullStr | Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach |
title_full_unstemmed | Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach |
title_short | Molecular Characterisation of Transport Mechanisms at the Developing Mouse Blood–CSF Interface: A Transcriptome Approach |
title_sort | molecular characterisation of transport mechanisms at the developing mouse blood–csf interface: a transcriptome approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310074/ https://www.ncbi.nlm.nih.gov/pubmed/22457777 http://dx.doi.org/10.1371/journal.pone.0033554 |
work_keys_str_mv | AT liddelowshanea molecularcharacterisationoftransportmechanismsatthedevelopingmousebloodcsfinterfaceatranscriptomeapproach AT templesally molecularcharacterisationoftransportmechanismsatthedevelopingmousebloodcsfinterfaceatranscriptomeapproach AT møllgardkjeld molecularcharacterisationoftransportmechanismsatthedevelopingmousebloodcsfinterfaceatranscriptomeapproach AT gehwolfrenate molecularcharacterisationoftransportmechanismsatthedevelopingmousebloodcsfinterfaceatranscriptomeapproach AT wagnerandrea molecularcharacterisationoftransportmechanismsatthedevelopingmousebloodcsfinterfaceatranscriptomeapproach AT bauerhannelore molecularcharacterisationoftransportmechanismsatthedevelopingmousebloodcsfinterfaceatranscriptomeapproach AT bauerhanschristian molecularcharacterisationoftransportmechanismsatthedevelopingmousebloodcsfinterfaceatranscriptomeapproach AT phoenixtimothyn molecularcharacterisationoftransportmechanismsatthedevelopingmousebloodcsfinterfaceatranscriptomeapproach AT dziegielewskakatarzynam molecularcharacterisationoftransportmechanismsatthedevelopingmousebloodcsfinterfaceatranscriptomeapproach AT saundersnormanr molecularcharacterisationoftransportmechanismsatthedevelopingmousebloodcsfinterfaceatranscriptomeapproach |