Cargando…
Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers
Accurate prediction of clinical changes of mild cognitive impairment (MCI) patients, including both qualitative change (i.e., conversion to Alzheimer's disease (AD)) and quantitative change (i.e., cognitive scores) at future time points, is important for early diagnosis of AD and for monitoring...
Autores principales: | Zhang, Daoqiang, Shen, Dinggang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3310854/ https://www.ncbi.nlm.nih.gov/pubmed/22457741 http://dx.doi.org/10.1371/journal.pone.0033182 |
Ejemplares similares
-
Early MCI-to-AD Conversion Prediction Using Future Value Forecasting of Multimodal Features
por: Minhas, Sidra, et al.
Publicado: (2021) -
Hierarchical Anatomical Brain Networks for MCI Prediction: Revisiting Volumetric Measures
por: Zhou, Luping, et al.
Publicado: (2011) -
Estimating sparse functional brain networks with spatial constraints for MCI identification
por: Xue, Yanfang, et al.
Publicado: (2020) -
Predicting MCI Status From Multimodal Language Data Using Cascaded Classifiers
por: Fraser, Kathleen C., et al.
Publicado: (2019) -
Correction: Estimating sparse functional brain networks with spatial constraints for MCI identification
por: Xue, Yanfang, et al.
Publicado: (2021)