Cargando…
The Shortest Isoform of Dystrophin (Dp40) Interacts with a Group of Presynaptic Proteins to Form a Presumptive Novel Complex in the Mouse Brain
Duchenne muscular dystrophy (DMD) causes cognitive impairment in one third of the patients, although the underlying mechanisms remain to be elucidated. Recent studies showed that mutations in the distal part of the dystrophin gene correlate well with the cognitive impairment in DMD patients, which i...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Humana Press Inc
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3311850/ https://www.ncbi.nlm.nih.gov/pubmed/22258561 http://dx.doi.org/10.1007/s12035-012-8233-5 |
_version_ | 1782227808270942208 |
---|---|
author | Tozawa, Takenori Itoh, Kyoko Yaoi, Takeshi Tando, So Umekage, Masafumi Dai, Hongmei Hosoi, Hajime Fushiki, Shinji |
author_facet | Tozawa, Takenori Itoh, Kyoko Yaoi, Takeshi Tando, So Umekage, Masafumi Dai, Hongmei Hosoi, Hajime Fushiki, Shinji |
author_sort | Tozawa, Takenori |
collection | PubMed |
description | Duchenne muscular dystrophy (DMD) causes cognitive impairment in one third of the patients, although the underlying mechanisms remain to be elucidated. Recent studies showed that mutations in the distal part of the dystrophin gene correlate well with the cognitive impairment in DMD patients, which is attributed to Dp71. The study on the expression of the shortest isoform, Dp40, has not been possible due to the lack of an isoform specific antibody. Dp40 has the same promoter as that found in Dp71 and lacks the normal C-terminal end of Dp427. In the present study, we have raised polyclonal antibody against the N-terminal sequence common to short isoforms of dystrophin, including Dp40, and investigated the expression pattern of Dp40 in the mouse brain. Affinity chromatography with this antibody and the consecutive LC-MS/MS analysis on the interacting proteins revealed that Dp40 was abundantly expressed in synaptic vesicles and interacted with a group of presynaptic proteins, including syntaxin1A and SNAP25, which are involved in exocytosis of synaptic vesicles in neurons. We thus suggest that Dp40 may form a novel protein complex and play a crucial role in presynaptic function. Further studies on these aspects of Dp40 function might provide more insight into the molecular mechanisms of cognitive impairment found in patients with DMD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12035-012-8233-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-3311850 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Humana Press Inc |
record_format | MEDLINE/PubMed |
spelling | pubmed-33118502012-03-30 The Shortest Isoform of Dystrophin (Dp40) Interacts with a Group of Presynaptic Proteins to Form a Presumptive Novel Complex in the Mouse Brain Tozawa, Takenori Itoh, Kyoko Yaoi, Takeshi Tando, So Umekage, Masafumi Dai, Hongmei Hosoi, Hajime Fushiki, Shinji Mol Neurobiol Article Duchenne muscular dystrophy (DMD) causes cognitive impairment in one third of the patients, although the underlying mechanisms remain to be elucidated. Recent studies showed that mutations in the distal part of the dystrophin gene correlate well with the cognitive impairment in DMD patients, which is attributed to Dp71. The study on the expression of the shortest isoform, Dp40, has not been possible due to the lack of an isoform specific antibody. Dp40 has the same promoter as that found in Dp71 and lacks the normal C-terminal end of Dp427. In the present study, we have raised polyclonal antibody against the N-terminal sequence common to short isoforms of dystrophin, including Dp40, and investigated the expression pattern of Dp40 in the mouse brain. Affinity chromatography with this antibody and the consecutive LC-MS/MS analysis on the interacting proteins revealed that Dp40 was abundantly expressed in synaptic vesicles and interacted with a group of presynaptic proteins, including syntaxin1A and SNAP25, which are involved in exocytosis of synaptic vesicles in neurons. We thus suggest that Dp40 may form a novel protein complex and play a crucial role in presynaptic function. Further studies on these aspects of Dp40 function might provide more insight into the molecular mechanisms of cognitive impairment found in patients with DMD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12035-012-8233-5) contains supplementary material, which is available to authorized users. Humana Press Inc 2012-01-19 2012 /pmc/articles/PMC3311850/ /pubmed/22258561 http://dx.doi.org/10.1007/s12035-012-8233-5 Text en © The Author(s) 2012 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Article Tozawa, Takenori Itoh, Kyoko Yaoi, Takeshi Tando, So Umekage, Masafumi Dai, Hongmei Hosoi, Hajime Fushiki, Shinji The Shortest Isoform of Dystrophin (Dp40) Interacts with a Group of Presynaptic Proteins to Form a Presumptive Novel Complex in the Mouse Brain |
title | The Shortest Isoform of Dystrophin (Dp40) Interacts with a Group of Presynaptic Proteins to Form a Presumptive Novel Complex in the Mouse Brain |
title_full | The Shortest Isoform of Dystrophin (Dp40) Interacts with a Group of Presynaptic Proteins to Form a Presumptive Novel Complex in the Mouse Brain |
title_fullStr | The Shortest Isoform of Dystrophin (Dp40) Interacts with a Group of Presynaptic Proteins to Form a Presumptive Novel Complex in the Mouse Brain |
title_full_unstemmed | The Shortest Isoform of Dystrophin (Dp40) Interacts with a Group of Presynaptic Proteins to Form a Presumptive Novel Complex in the Mouse Brain |
title_short | The Shortest Isoform of Dystrophin (Dp40) Interacts with a Group of Presynaptic Proteins to Form a Presumptive Novel Complex in the Mouse Brain |
title_sort | shortest isoform of dystrophin (dp40) interacts with a group of presynaptic proteins to form a presumptive novel complex in the mouse brain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3311850/ https://www.ncbi.nlm.nih.gov/pubmed/22258561 http://dx.doi.org/10.1007/s12035-012-8233-5 |
work_keys_str_mv | AT tozawatakenori theshortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT itohkyoko theshortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT yaoitakeshi theshortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT tandoso theshortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT umekagemasafumi theshortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT daihongmei theshortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT hosoihajime theshortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT fushikishinji theshortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT tozawatakenori shortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT itohkyoko shortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT yaoitakeshi shortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT tandoso shortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT umekagemasafumi shortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT daihongmei shortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT hosoihajime shortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain AT fushikishinji shortestisoformofdystrophindp40interactswithagroupofpresynapticproteinstoformapresumptivenovelcomplexinthemousebrain |