Cargando…
Multi-field-of-view strategy for image-based outcome prediction of multi-parametric estrogen receptor-positive breast cancer histopathology: Comparison to Oncotype DX
In this paper, we attempt to quantify the prognostic information embedded in multi-parametric histologic biopsy images to predict disease aggressiveness in estrogen receptor-positive (ER+) breast cancers (BCa). The novel methodological contribution is in the use of a multi-field-of-view (multi-FOV)...
Autores principales: | Basavanhally, Ajay, Feldman, Michael, Shih, Natalie, Mies, Carolyn, Tomaszewski, John, Ganesan, Shridar, Madabhushi, Anant |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312707/ https://www.ncbi.nlm.nih.gov/pubmed/22811953 http://dx.doi.org/10.4103/2153-3539.92027 |
Ejemplares similares
-
Quantitative nuclear histomorphometry predicts oncotype DX risk categories for early stage ER+ breast cancer
por: Whitney, Jon, et al.
Publicado: (2018) -
High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: Application to invasive breast cancer detection
por: Cruz-Roa, Angel, et al.
Publicado: (2018) -
Accurate and reproducible invasive breast cancer detection in whole-slide images: A Deep Learning approach for quantifying tumor extent
por: Cruz-Roa, Angel, et al.
Publicado: (2017) -
Automated Tubule Nuclei Quantification and Correlation with Oncotype DX risk categories in ER+ Breast Cancer Whole Slide Images
por: Romo-Bucheli, David, et al.
Publicado: (2016) -
Quantitative nuclear histomorphometric features are predictive of Oncotype DX risk categories in ductal carcinoma in situ: preliminary findings
por: Li, Haojia, et al.
Publicado: (2019)