Cargando…

Learning histopathological patterns

AIMS: The aim was to demonstrate a method for automated image analysis of immunohistochemically stained tissue samples for extracting features that correlate with patient disease. We address the problem of quantifying tumor tissue and segmenting and counting cell nuclei. MATERIALS AND METHODS: Our m...

Descripción completa

Detalles Bibliográficos
Autores principales: Kårsnäs, Andreas, Dahl, Anders L., Larsen, Rasmus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312718/
https://www.ncbi.nlm.nih.gov/pubmed/22811956
http://dx.doi.org/10.4103/2153-3539.92033
_version_ 1782227881473081344
author Kårsnäs, Andreas
Dahl, Anders L.
Larsen, Rasmus
author_facet Kårsnäs, Andreas
Dahl, Anders L.
Larsen, Rasmus
author_sort Kårsnäs, Andreas
collection PubMed
description AIMS: The aim was to demonstrate a method for automated image analysis of immunohistochemically stained tissue samples for extracting features that correlate with patient disease. We address the problem of quantifying tumor tissue and segmenting and counting cell nuclei. MATERIALS AND METHODS: Our method utilizes a flexible segmentation method based on sparse coding trained from representative image samples. Nuclei counting is based on a nucleus model that takes size, shape, and nucleus probability into account. Nuclei clustering and overlays are resolved using a gray-weighted distance transform. We obtain a probability measure for pixels belonging to a nucleus from our segmentation procedure. Experiments are carried out on two sets of immunohistochemically stained images – one set based on the estrogen receptor (ER) and the other on antigen KI-67. For the nuclei separation we have selected 207 ER image samples from 58 tissue micro array-cores corresponding to 58 patients and 136 KI-67 image samples also from 58 cores. The images are hand-annotated by marking the center position of each nucleus. For the ER data we have a total of 1006 nuclei and for the KI-67 we have 796 nuclei. Segmentation performance was evaluated in terms of missing nuclei, falsely detected nuclei, and multiple detections. The proposed method is compared to state-of-the-art Bayesian classification. STATISTICAL ANALYSIS USED: The performance of the proposed method and a state-of-the-art algorithm including variations thereof is compared using the Wilcoxon rank sum test. RESULTS: For both the ER experiment and the KI-67 experiment the proposed method exhibits lower error rates than the state-of-the-art method. Total error rates were 4.8 % and 7.7 % in the two experiments, corresponding to an average of 0.23 and 0.45 errors per image, respectively. The Wilcoxon rank sum tests show statistically significant improvements over the state-of-the-art method. CONCLUSIONS: We have demonstrated a method and obtained good performance compared to state-of-the-art nuclei separation. The segmentation procedure is simple, highly flexible, and we demonstrate how it, in addition to the nuclei separation, can perform precise segmentation of cancerous tissue. The complexity of the segmentation procedure is linear in the image size and the nuclei separation is linear in the number of nuclei. Additionally the method can be parallelized to obtain high-speed computations.
format Online
Article
Text
id pubmed-3312718
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Medknow Publications & Media Pvt Ltd
record_format MEDLINE/PubMed
spelling pubmed-33127182012-07-18 Learning histopathological patterns Kårsnäs, Andreas Dahl, Anders L. Larsen, Rasmus J Pathol Inform Symposium - Original Research AIMS: The aim was to demonstrate a method for automated image analysis of immunohistochemically stained tissue samples for extracting features that correlate with patient disease. We address the problem of quantifying tumor tissue and segmenting and counting cell nuclei. MATERIALS AND METHODS: Our method utilizes a flexible segmentation method based on sparse coding trained from representative image samples. Nuclei counting is based on a nucleus model that takes size, shape, and nucleus probability into account. Nuclei clustering and overlays are resolved using a gray-weighted distance transform. We obtain a probability measure for pixels belonging to a nucleus from our segmentation procedure. Experiments are carried out on two sets of immunohistochemically stained images – one set based on the estrogen receptor (ER) and the other on antigen KI-67. For the nuclei separation we have selected 207 ER image samples from 58 tissue micro array-cores corresponding to 58 patients and 136 KI-67 image samples also from 58 cores. The images are hand-annotated by marking the center position of each nucleus. For the ER data we have a total of 1006 nuclei and for the KI-67 we have 796 nuclei. Segmentation performance was evaluated in terms of missing nuclei, falsely detected nuclei, and multiple detections. The proposed method is compared to state-of-the-art Bayesian classification. STATISTICAL ANALYSIS USED: The performance of the proposed method and a state-of-the-art algorithm including variations thereof is compared using the Wilcoxon rank sum test. RESULTS: For both the ER experiment and the KI-67 experiment the proposed method exhibits lower error rates than the state-of-the-art method. Total error rates were 4.8 % and 7.7 % in the two experiments, corresponding to an average of 0.23 and 0.45 errors per image, respectively. The Wilcoxon rank sum tests show statistically significant improvements over the state-of-the-art method. CONCLUSIONS: We have demonstrated a method and obtained good performance compared to state-of-the-art nuclei separation. The segmentation procedure is simple, highly flexible, and we demonstrate how it, in addition to the nuclei separation, can perform precise segmentation of cancerous tissue. The complexity of the segmentation procedure is linear in the image size and the nuclei separation is linear in the number of nuclei. Additionally the method can be parallelized to obtain high-speed computations. Medknow Publications & Media Pvt Ltd 2012-01-19 /pmc/articles/PMC3312718/ /pubmed/22811956 http://dx.doi.org/10.4103/2153-3539.92033 Text en Copyright: © 2011 Kårsnäs A. http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Symposium - Original Research
Kårsnäs, Andreas
Dahl, Anders L.
Larsen, Rasmus
Learning histopathological patterns
title Learning histopathological patterns
title_full Learning histopathological patterns
title_fullStr Learning histopathological patterns
title_full_unstemmed Learning histopathological patterns
title_short Learning histopathological patterns
title_sort learning histopathological patterns
topic Symposium - Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312718/
https://www.ncbi.nlm.nih.gov/pubmed/22811956
http://dx.doi.org/10.4103/2153-3539.92033
work_keys_str_mv AT karsnasandreas learninghistopathologicalpatterns
AT dahlandersl learninghistopathologicalpatterns
AT larsenrasmus learninghistopathologicalpatterns