Cargando…

The triple distribution of codes and ordered codes

We study the distribution of triples of codewords of codes and ordered codes. Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (8) (2005) 2859–2866] used the triple distribution of a code to establish a bound on t...

Descripción completa

Detalles Bibliográficos
Autor principal: Trinker, Horst
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312736/
https://www.ncbi.nlm.nih.gov/pubmed/22505770
http://dx.doi.org/10.1016/j.disc.2011.06.028
Descripción
Sumario:We study the distribution of triples of codewords of codes and ordered codes. Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (8) (2005) 2859–2866] used the triple distribution of a code to establish a bound on the number of codewords based on semidefinite programming. In the first part of this work, we generalize this approach for ordered codes. In the second part, we consider linear codes and linear ordered codes and present a MacWilliams-type identity for the triple distribution of their dual code. Based on the non-negativity of this linear transform, we establish a linear programming bound and conclude with a table of parameters for which this bound yields better results than the standard linear programming bound.