Cargando…

The triple distribution of codes and ordered codes

We study the distribution of triples of codewords of codes and ordered codes. Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (8) (2005) 2859–2866] used the triple distribution of a code to establish a bound on t...

Descripción completa

Detalles Bibliográficos
Autor principal: Trinker, Horst
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312736/
https://www.ncbi.nlm.nih.gov/pubmed/22505770
http://dx.doi.org/10.1016/j.disc.2011.06.028
_version_ 1782227885431455744
author Trinker, Horst
author_facet Trinker, Horst
author_sort Trinker, Horst
collection PubMed
description We study the distribution of triples of codewords of codes and ordered codes. Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (8) (2005) 2859–2866] used the triple distribution of a code to establish a bound on the number of codewords based on semidefinite programming. In the first part of this work, we generalize this approach for ordered codes. In the second part, we consider linear codes and linear ordered codes and present a MacWilliams-type identity for the triple distribution of their dual code. Based on the non-negativity of this linear transform, we establish a linear programming bound and conclude with a table of parameters for which this bound yields better results than the standard linear programming bound.
format Online
Article
Text
id pubmed-3312736
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-33127362012-04-11 The triple distribution of codes and ordered codes Trinker, Horst Discrete Math Article We study the distribution of triples of codewords of codes and ordered codes. Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (8) (2005) 2859–2866] used the triple distribution of a code to establish a bound on the number of codewords based on semidefinite programming. In the first part of this work, we generalize this approach for ordered codes. In the second part, we consider linear codes and linear ordered codes and present a MacWilliams-type identity for the triple distribution of their dual code. Based on the non-negativity of this linear transform, we establish a linear programming bound and conclude with a table of parameters for which this bound yields better results than the standard linear programming bound. Elsevier 2011-10-28 /pmc/articles/PMC3312736/ /pubmed/22505770 http://dx.doi.org/10.1016/j.disc.2011.06.028 Text en © 2011 Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license
spellingShingle Article
Trinker, Horst
The triple distribution of codes and ordered codes
title The triple distribution of codes and ordered codes
title_full The triple distribution of codes and ordered codes
title_fullStr The triple distribution of codes and ordered codes
title_full_unstemmed The triple distribution of codes and ordered codes
title_short The triple distribution of codes and ordered codes
title_sort triple distribution of codes and ordered codes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312736/
https://www.ncbi.nlm.nih.gov/pubmed/22505770
http://dx.doi.org/10.1016/j.disc.2011.06.028
work_keys_str_mv AT trinkerhorst thetripledistributionofcodesandorderedcodes
AT trinkerhorst tripledistributionofcodesandorderedcodes