Cargando…
The triple distribution of codes and ordered codes
We study the distribution of triples of codewords of codes and ordered codes. Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (8) (2005) 2859–2866] used the triple distribution of a code to establish a bound on t...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312736/ https://www.ncbi.nlm.nih.gov/pubmed/22505770 http://dx.doi.org/10.1016/j.disc.2011.06.028 |
_version_ | 1782227885431455744 |
---|---|
author | Trinker, Horst |
author_facet | Trinker, Horst |
author_sort | Trinker, Horst |
collection | PubMed |
description | We study the distribution of triples of codewords of codes and ordered codes. Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (8) (2005) 2859–2866] used the triple distribution of a code to establish a bound on the number of codewords based on semidefinite programming. In the first part of this work, we generalize this approach for ordered codes. In the second part, we consider linear codes and linear ordered codes and present a MacWilliams-type identity for the triple distribution of their dual code. Based on the non-negativity of this linear transform, we establish a linear programming bound and conclude with a table of parameters for which this bound yields better results than the standard linear programming bound. |
format | Online Article Text |
id | pubmed-3312736 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-33127362012-04-11 The triple distribution of codes and ordered codes Trinker, Horst Discrete Math Article We study the distribution of triples of codewords of codes and ordered codes. Schrijver [A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Theory 51 (8) (2005) 2859–2866] used the triple distribution of a code to establish a bound on the number of codewords based on semidefinite programming. In the first part of this work, we generalize this approach for ordered codes. In the second part, we consider linear codes and linear ordered codes and present a MacWilliams-type identity for the triple distribution of their dual code. Based on the non-negativity of this linear transform, we establish a linear programming bound and conclude with a table of parameters for which this bound yields better results than the standard linear programming bound. Elsevier 2011-10-28 /pmc/articles/PMC3312736/ /pubmed/22505770 http://dx.doi.org/10.1016/j.disc.2011.06.028 Text en © 2011 Elsevier B.V. https://creativecommons.org/licenses/by-nc-nd/3.0/ Open Access under CC BY-NC-ND 3.0 (https://creativecommons.org/licenses/by-nc-nd/3.0/) license |
spellingShingle | Article Trinker, Horst The triple distribution of codes and ordered codes |
title | The triple distribution of codes and ordered codes |
title_full | The triple distribution of codes and ordered codes |
title_fullStr | The triple distribution of codes and ordered codes |
title_full_unstemmed | The triple distribution of codes and ordered codes |
title_short | The triple distribution of codes and ordered codes |
title_sort | triple distribution of codes and ordered codes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312736/ https://www.ncbi.nlm.nih.gov/pubmed/22505770 http://dx.doi.org/10.1016/j.disc.2011.06.028 |
work_keys_str_mv | AT trinkerhorst thetripledistributionofcodesandorderedcodes AT trinkerhorst tripledistributionofcodesandorderedcodes |