Cargando…
Effects of methylphenidate on attentional set-shifting in a genetic model of attention-deficit/hyperactivity disorder
BACKGROUND: Although deficits of attentional set-shifting have been reported in individuals with attention deficit/hyperactivity disorder (ADHD), it is rarely examined in animal models. METHODS: This study compared spontaneously hypertensive rats (SHRs; a genetic animal model of ADHD) and Wistar-Kyo...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312818/ https://www.ncbi.nlm.nih.gov/pubmed/22369105 http://dx.doi.org/10.1186/1744-9081-8-10 |
Sumario: | BACKGROUND: Although deficits of attentional set-shifting have been reported in individuals with attention deficit/hyperactivity disorder (ADHD), it is rarely examined in animal models. METHODS: This study compared spontaneously hypertensive rats (SHRs; a genetic animal model of ADHD) and Wistar-Kyoto (WKY) and Sprague-Dawley (SD) rats (normoactive control strains), on attentional set-shifting task (ASST) performance. Furthermore, the dose-effects of methylphenidate (MPH) on attentional set-shifting of SHR were investigated. In experiment 1, ASST procedures were conducted in SHR, WKY and SD rats of 8 each at the age of 5 weeks. Mean latencies at the initial phase, error types and numbers, and trials to criteria at each stage were recorded. In experiment 2, 24 SHR rats were randomly assigned to 3 groups of 8 each-- MPH-L (lower dose), MPH-H (higher dose), and SHR-vehicle groups. From 3 weeks, they were administered 2.5 mg/kg or 5 mg/kg MPH or saline respectively for 14 consecutive days. All rats were tested in the ASST at the age of 5 weeks. RESULTS: The SHRs generally exhibited poorer performance on ASST than the control WKY and SD rats. Significant strain effects on mean latency [F (2, 21) = 639.636, p < 0.001] and trials to criterion [F (2, 21) = 114.118, p < 0.001] were observed. The SHRs were found to have more perseverative and regressive errors than the control strains (p < 0.001). After MPH treatment, the two MPH treated groups exhibited significantly longer latency and fewer trials to reach criterion than the SHR-vehicle group and the MPH-L group exhibited fewer trials to reach criterion in more stages compared with the MPH-H group. Significant main effects of treatment [F (2, 21) = 52.174, p < 0.001] and error subtype [F (2, 42) = 221.635, p < 0.01] were found. CONCLUSIONS: The SHR may be impaired in discrimination learning, reversal learning and attentional set-shifting. Our study provides evidence that MPH may improve the SHR's performance on attentional set-shifting and lower dose is more effective than higher dose. |
---|