Cargando…

Use of a Deformable Atlas to Identify Cryptic Critical Structures in the Treatment of Glioblastoma Multiforme

Dose constraints for traditional neural critical structures (e.g. optic chiasm, brain stem) are a standard component of planning radiation therapy to the central nervous system. Increasingly, investigators are becoming interested in accounting for the dose delivered to other non-target neural struct...

Descripción completa

Detalles Bibliográficos
Autores principales: Weksberg, David C., Bilton, Stephen D., Chang, Eric L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312881/
https://www.ncbi.nlm.nih.gov/pubmed/22461883
http://dx.doi.org/10.1371/journal.pone.0032098
Descripción
Sumario:Dose constraints for traditional neural critical structures (e.g. optic chiasm, brain stem) are a standard component of planning radiation therapy to the central nervous system. Increasingly, investigators are becoming interested in accounting for the dose delivered to other non-target neural structures (e.g. hippocampi), which are not easily identified on axial imaging. In this pilot study, a commercially available digital atlas was used to identify cryptic neural structures (hippocampus, optic radiations, and visual cortices) in 6 patients who received intensity modulated radiation therapy (IMRT) as part of multimodal management of glioblastoma multiforme (GBM). The patient's original IMRT plans were re-optimized, with avoidance parameters for the newly identified critical structures. Re-optimization was able to reduce both mean and maximum dose to the volumes of interest, with a more pronounced effect for contralateral structures. Mean dose was reduced by 11% and 3% to contralateral and ipsilateral structures, respectively, with comparable reduction in maximum dose of 10% and 2%, respectively. Importantly, target coverage was not compromised, with an average change in coverage of 0.2%. Overall, our results demonstrate the feasibility of incorporating tools for cryptic critical structure identification into the treatment planning process for GBM.