Cargando…
Recombinant Human Endostatin Endostar Inhibits Tumor Growth and Metastasis in a Mouse Xenograft Model of Colon Cancer
To investigate the effects of recombinant human endostatin Endostar on metastasis and angiogenesis and lymphangiogenesis of colorectal cancer cells in a mouse xenograft model. Colon cancer cells SW620 were injected subcutaneously into the left hind flank of nude mice to establish mouse xenograft mod...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3313035/ https://www.ncbi.nlm.nih.gov/pubmed/21938482 http://dx.doi.org/10.1007/s12253-011-9447-y |
Sumario: | To investigate the effects of recombinant human endostatin Endostar on metastasis and angiogenesis and lymphangiogenesis of colorectal cancer cells in a mouse xenograft model. Colon cancer cells SW620 were injected subcutaneously into the left hind flank of nude mice to establish mouse xenograft models. The mice were treated with normal saline or Endostar subcutaneously every other day. The growth and lymph node metastasis of tumor cells, angiogenesis and lymphangiogenesis in tumor tissue were detected. Apoptosis and cell cycle distribution were studied by flow cytometry. The expression of VEGF-A, -C, or -D in SW620 cells was determined by immunoblotting assays. Endostar inhibited tumor growth and the rate of lymph node metastasis (P < 0.01). The density of blood vessels in or around the tumor area was 12.27 ± 1.21 and 22.25 ± 2.69 per field in Endostar-treated mice and controls (P < 0.05), respectively. Endostar also decreased the density of lymphatic vessels in tumor tissues (7.84 ± 0.81 vs. 13.83 ± 1.08, P < 0.05). Endostar suppresses angiogenesis and lymphangiogenesis in the lymph nodes with metastases, simultaneously. The expression of VEGF-A, -C and -D in SW620 cells treated with Endostar was substantially lower than that of controls. Endostar inhibited growth and lymph node metastasis of colon cancer cells by inhibiting angiogenesis and lymphangiogenesis in a mouse xenograft model of colon cancer. |
---|