Cargando…

Adaptive regulation of membrane lipids and fluidity during thermal acclimation in Tetrahymena

The free-living eukaryotic protozoan Tetrahymena is a potentially useful model for the thermoadaptive membrane regulation because of easy growth in the axenic culture, systematic isolation of subcellular organelles, and quick response to temperature stress. Exposure of Tetrahymena cells to the cold...

Descripción completa

Detalles Bibliográficos
Autor principal: NOZAWA, Yoshinori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Japan Academy 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3313689/
https://www.ncbi.nlm.nih.gov/pubmed/21986311
http://dx.doi.org/10.2183/pjab.87.450
Descripción
Sumario:The free-living eukaryotic protozoan Tetrahymena is a potentially useful model for the thermoadaptive membrane regulation because of easy growth in the axenic culture, systematic isolation of subcellular organelles, and quick response to temperature stress. Exposure of Tetrahymena cells to the cold temperature induces marked alterations in the lipid composition and the physical properties (fluidity) of various membranes. The increase in fatty acid unsaturation of membrane phospholipids is required to preserve the proper fluidity. In this homeoviscous adaptive response, acyl-CoA desaturase plays a pivotal role and its activity is regulated by induction of the enzyme via transcriptional activation.