Cargando…
Interorganellar DNA transfer in wheat: dynamics and phylogenetic origin
A homology search of wheat chloroplast (ct) and mitochondrial (mt) genomes identified 54 ctDNA segments that have homology with 66 mtDNA segments. The mtDNA segments were classified according to their origin: orthologs (prokaryotic origin), xenologs (interorganellar DNA transfer origin) and paralogs...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Japan Academy
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3313693/ https://www.ncbi.nlm.nih.gov/pubmed/21986316 http://dx.doi.org/10.2183/pjab.87.529 |
Sumario: | A homology search of wheat chloroplast (ct) and mitochondrial (mt) genomes identified 54 ctDNA segments that have homology with 66 mtDNA segments. The mtDNA segments were classified according to their origin: orthologs (prokaryotic origin), xenologs (interorganellar DNA transfer origin) and paralogs (intraorganellar DNA amplification origin). The 66 mtDNA sequences with homology to ctDNA segments included 14 paralogs, 18 orthologs and 34 xenologs. Analysis of the xenologs indicated that the DNA transfer occurred unidirectionally from the ct genome to the mt genome. The evolutionary timing of each interorganellar DNA transfer that generated a xenolog was estimated. This analysis showed that 2 xenologs originated early in green plant evolution, 4 in angiosperm evolution, 3 in monocotyledon evolution, 9 during cereal diversification and 8 in the evolution of wheat. Six other xenologs showed recurrent transfer from the ct to mt genomes in more than one taxon. The two remaining xenologs were uninformative on the evolutionary timing of their transfer. The wheat mt nad9 gene was found to be chimeric, consisting of the cereal nad9 gene and its 291 bp 5′-flanking region that included a 58 bp xenolog of the ct-ndhC origin. |
---|