Cargando…
Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting
Cancer cachexia is a highly debilitating paraneoplastic disease observed in more than 50% of patients with advanced cancers and directly contributes to 20% of cancer deaths. Loss of skeletal muscle is a defining characteristic of patients with cancer cachexia and is associated with poor survival. Th...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314175/ https://www.ncbi.nlm.nih.gov/pubmed/22361433 |
_version_ | 1782228077886046208 |
---|---|
author | Shum, Angie M. Y. Mahendradatta, Theodore Taylor, Ryland J. Painter, Arran B. Moore, Melissa M. Tsoli, Maria Tan, Timothy C. Clarke, Stephen J. Robertson, Graham R. Polly, Patsie |
author_facet | Shum, Angie M. Y. Mahendradatta, Theodore Taylor, Ryland J. Painter, Arran B. Moore, Melissa M. Tsoli, Maria Tan, Timothy C. Clarke, Stephen J. Robertson, Graham R. Polly, Patsie |
author_sort | Shum, Angie M. Y. |
collection | PubMed |
description | Cancer cachexia is a highly debilitating paraneoplastic disease observed in more than 50% of patients with advanced cancers and directly contributes to 20% of cancer deaths. Loss of skeletal muscle is a defining characteristic of patients with cancer cachexia and is associated with poor survival. The present study reveals the involvement of a myogenic transcription factor Myocyte Enhancer Factor (MEF) 2C in cancer-induced skeletal muscle wasting. Increased skeletal muscle mRNA expression of Suppressor of Cytokine Signaling (Socs) 3 and the IL-6 receptor indicative of active IL-6 signaling was seen in skeletal muscle of mice bearing the Colon 26 (C26) carcinoma. Loss of skeletal muscle structural integrity and distorted mitochondria were also observed using electron microscopy. Gene and protein expression of MEF2C was significantly downregulated in skeletal muscle from C26-bearing mice. MEF2C gene targets myozenin and myoglobin as well as myokinase were also altered during cachexia, suggesting dysregulated oxygen transport capacity and ATP regeneration in addition to distorted structural integrity. In addition, reduced expression of calcineurin was observed which suggested a potential pathway of MEF2C dysregulation. Together, these effects may limit sarcomeric contractile ability and also predispose skeletal muscle to structural instability; associated with muscle wasting and fatigue in cachexia. |
format | Online Article Text |
id | pubmed-3314175 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-33141752012-04-05 Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting Shum, Angie M. Y. Mahendradatta, Theodore Taylor, Ryland J. Painter, Arran B. Moore, Melissa M. Tsoli, Maria Tan, Timothy C. Clarke, Stephen J. Robertson, Graham R. Polly, Patsie Aging (Albany NY) Research Paper Cancer cachexia is a highly debilitating paraneoplastic disease observed in more than 50% of patients with advanced cancers and directly contributes to 20% of cancer deaths. Loss of skeletal muscle is a defining characteristic of patients with cancer cachexia and is associated with poor survival. The present study reveals the involvement of a myogenic transcription factor Myocyte Enhancer Factor (MEF) 2C in cancer-induced skeletal muscle wasting. Increased skeletal muscle mRNA expression of Suppressor of Cytokine Signaling (Socs) 3 and the IL-6 receptor indicative of active IL-6 signaling was seen in skeletal muscle of mice bearing the Colon 26 (C26) carcinoma. Loss of skeletal muscle structural integrity and distorted mitochondria were also observed using electron microscopy. Gene and protein expression of MEF2C was significantly downregulated in skeletal muscle from C26-bearing mice. MEF2C gene targets myozenin and myoglobin as well as myokinase were also altered during cachexia, suggesting dysregulated oxygen transport capacity and ATP regeneration in addition to distorted structural integrity. In addition, reduced expression of calcineurin was observed which suggested a potential pathway of MEF2C dysregulation. Together, these effects may limit sarcomeric contractile ability and also predispose skeletal muscle to structural instability; associated with muscle wasting and fatigue in cachexia. Impact Journals LLC 2012-02-21 /pmc/articles/PMC3314175/ /pubmed/22361433 Text en Copyright: © 2012 Shum et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited |
spellingShingle | Research Paper Shum, Angie M. Y. Mahendradatta, Theodore Taylor, Ryland J. Painter, Arran B. Moore, Melissa M. Tsoli, Maria Tan, Timothy C. Clarke, Stephen J. Robertson, Graham R. Polly, Patsie Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting |
title | Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting |
title_full | Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting |
title_fullStr | Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting |
title_full_unstemmed | Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting |
title_short | Disruption of MEF2C signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting |
title_sort | disruption of mef2c signaling and loss of sarcomeric and mitochondrial integrity in cancer-induced skeletal muscle wasting |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314175/ https://www.ncbi.nlm.nih.gov/pubmed/22361433 |
work_keys_str_mv | AT shumangiemy disruptionofmef2csignalingandlossofsarcomericandmitochondrialintegrityincancerinducedskeletalmusclewasting AT mahendradattatheodore disruptionofmef2csignalingandlossofsarcomericandmitochondrialintegrityincancerinducedskeletalmusclewasting AT taylorrylandj disruptionofmef2csignalingandlossofsarcomericandmitochondrialintegrityincancerinducedskeletalmusclewasting AT painterarranb disruptionofmef2csignalingandlossofsarcomericandmitochondrialintegrityincancerinducedskeletalmusclewasting AT mooremelissam disruptionofmef2csignalingandlossofsarcomericandmitochondrialintegrityincancerinducedskeletalmusclewasting AT tsolimaria disruptionofmef2csignalingandlossofsarcomericandmitochondrialintegrityincancerinducedskeletalmusclewasting AT tantimothyc disruptionofmef2csignalingandlossofsarcomericandmitochondrialintegrityincancerinducedskeletalmusclewasting AT clarkestephenj disruptionofmef2csignalingandlossofsarcomericandmitochondrialintegrityincancerinducedskeletalmusclewasting AT robertsongrahamr disruptionofmef2csignalingandlossofsarcomericandmitochondrialintegrityincancerinducedskeletalmusclewasting AT pollypatsie disruptionofmef2csignalingandlossofsarcomericandmitochondrialintegrityincancerinducedskeletalmusclewasting |