Cargando…
The New and Computationally Efficient MIL-SOM Algorithm: Potential Benefits for Visualization and Analysis of a Large-Scale High-Dimensional Clinically Acquired Geographic Data
The objective of this paper is to introduce an efficient algorithm, namely, the mathematically improved learning-self organizing map (MIL-SOM) algorithm, which speeds up the self-organizing map (SOM) training process. In the proposed MIL-SOM algorithm, the weights of Kohonen's SOM are based on...
Autores principales: | Oyana, Tonny J., Achenie, Luke E. K., Heo, Joon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314187/ https://www.ncbi.nlm.nih.gov/pubmed/22481977 http://dx.doi.org/10.1155/2012/683265 |
Ejemplares similares
-
A New-Fangled FES-k-Means Clustering Algorithm for Disease Discovery and Visual Analytics
por: Oyana, Tonny J
Publicado: (2010) -
Geographic variations of childhood asthma hospitalization and outpatient visits and proximity to ambient pollution sources at a U.S.-Canada border crossing
por: Oyana, Tonny J, et al.
Publicado: (2005) -
A Hybrid Visual Tracking Algorithm Based on SOM Network and Correlation Filter
por: Zhang, Yuanping, et al.
Publicado: (2021) -
A Critical Assessment of Geographic Clusters of Breast and Lung Cancer Incidences among Residents Living near the Tittabawassee and Saginaw Rivers, Michigan, USA
por: Guajardo, Olga A., et al.
Publicado: (2009) -
An improved SOM algorithm and its application to color feature extraction
por: Chen, Li-Ping, et al.
Publicado: (2013)