Cargando…
Design of a multi-signature ensemble classifier predicting neuroblastoma patients' outcome
BACKGROUND: Neuroblastoma is the most common pediatric solid tumor of the sympathetic nervous system. Development of improved predictive tools for patients stratification is a crucial requirement for neuroblastoma therapy. Several studies utilized gene expression-based signatures to stratify neurobl...
Autores principales: | Cornero, Andrea, Acquaviva, Massimo, Fardin, Paolo, Versteeg, Rogier, Schramm, Alexander, Eva, Alessandra, Bosco, Maria Carla, Blengio, Fabiola, Barzaghi, Sara, Varesio, Luigi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314564/ https://www.ncbi.nlm.nih.gov/pubmed/22536959 http://dx.doi.org/10.1186/1471-2105-13-S4-S13 |
Ejemplares similares
-
Use of Attribute Driven Incremental Discretization and Logic Learning Machine to build a prognostic classifier for neuroblastoma patients
por: Cangelosi, Davide, et al.
Publicado: (2014) -
Identification of Multiple Hypoxia Signatures in Neuroblastoma Cell Lines by l(1)-l(2) Regularization and Data Reduction
por: Fardin, Paolo, et al.
Publicado: (2010) -
Logic Learning Machine creates explicit and stable rules stratifying neuroblastoma patients
por: Cangelosi, Davide, et al.
Publicado: (2013) -
Artificial neural network classifier predicts neuroblastoma patients’ outcome
por: Cangelosi, Davide, et al.
Publicado: (2016) -
Transcriptome analysis defines myocardium gene signatures in children with ToF and ASD and reveals disease-specific molecular reprogramming in response to surgery with cardiopulmonary bypass
por: Raggi, Federica, et al.
Publicado: (2020)