Cargando…
When Subterranean Termites Challenge the Rules of Fungal Epizootics
Over the past 50 years, repeated attempts have been made to develop biological control technologies for use against economically important species of subterranean termites, focusing primarily on the use of the entomopathogenic fungus Metarhizium anisopliae. However, no successful field implementatio...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314638/ https://www.ncbi.nlm.nih.gov/pubmed/22470575 http://dx.doi.org/10.1371/journal.pone.0034484 |
_version_ | 1782228118264610816 |
---|---|
author | Chouvenc, Thomas Su, Nan-Yao |
author_facet | Chouvenc, Thomas Su, Nan-Yao |
author_sort | Chouvenc, Thomas |
collection | PubMed |
description | Over the past 50 years, repeated attempts have been made to develop biological control technologies for use against economically important species of subterranean termites, focusing primarily on the use of the entomopathogenic fungus Metarhizium anisopliae. However, no successful field implementation of biological control has been reported. Most previous work has been conducted under the assumption that environmental conditions within termite nests would favor the growth and dispersion of entomopathogenic agents, resulting in an epizootic. Epizootics rely on the ability of the pathogenic microorganism to self-replicate and disperse among the host population. However, our study shows that due to multilevel disease resistance mechanisms, the incidence of an epizootic within a group of termites is unlikely. By exposing groups of 50 termites in planar arenas containing sand particles treated with a range of densities of an entomopathogenic fungus, we were able to quantify behavioral patterns as a function of the death ratios resulting from the fungal exposure. The inability of the fungal pathogen M. anisopliae to complete its life cycle within a Coptotermes formosanus (Isoptera: Rhinotermitidae) group was mainly the result of cannibalism and the burial behavior of the nest mates, even when termite mortality reached up to 75%. Because a subterranean termite colony, as a superorganism, can prevent epizootics of M. anisopliae, the traditional concepts of epizootiology may not apply to this social insect when exposed to fungal pathogens, or other pathogen for which termites have evolved behavioral and physiological means of disrupting their life cycle. |
format | Online Article Text |
id | pubmed-3314638 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33146382012-04-02 When Subterranean Termites Challenge the Rules of Fungal Epizootics Chouvenc, Thomas Su, Nan-Yao PLoS One Research Article Over the past 50 years, repeated attempts have been made to develop biological control technologies for use against economically important species of subterranean termites, focusing primarily on the use of the entomopathogenic fungus Metarhizium anisopliae. However, no successful field implementation of biological control has been reported. Most previous work has been conducted under the assumption that environmental conditions within termite nests would favor the growth and dispersion of entomopathogenic agents, resulting in an epizootic. Epizootics rely on the ability of the pathogenic microorganism to self-replicate and disperse among the host population. However, our study shows that due to multilevel disease resistance mechanisms, the incidence of an epizootic within a group of termites is unlikely. By exposing groups of 50 termites in planar arenas containing sand particles treated with a range of densities of an entomopathogenic fungus, we were able to quantify behavioral patterns as a function of the death ratios resulting from the fungal exposure. The inability of the fungal pathogen M. anisopliae to complete its life cycle within a Coptotermes formosanus (Isoptera: Rhinotermitidae) group was mainly the result of cannibalism and the burial behavior of the nest mates, even when termite mortality reached up to 75%. Because a subterranean termite colony, as a superorganism, can prevent epizootics of M. anisopliae, the traditional concepts of epizootiology may not apply to this social insect when exposed to fungal pathogens, or other pathogen for which termites have evolved behavioral and physiological means of disrupting their life cycle. Public Library of Science 2012-03-28 /pmc/articles/PMC3314638/ /pubmed/22470575 http://dx.doi.org/10.1371/journal.pone.0034484 Text en Chouvenc, Su. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Chouvenc, Thomas Su, Nan-Yao When Subterranean Termites Challenge the Rules of Fungal Epizootics |
title | When Subterranean Termites Challenge the Rules of Fungal Epizootics |
title_full | When Subterranean Termites Challenge the Rules of Fungal Epizootics |
title_fullStr | When Subterranean Termites Challenge the Rules of Fungal Epizootics |
title_full_unstemmed | When Subterranean Termites Challenge the Rules of Fungal Epizootics |
title_short | When Subterranean Termites Challenge the Rules of Fungal Epizootics |
title_sort | when subterranean termites challenge the rules of fungal epizootics |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314638/ https://www.ncbi.nlm.nih.gov/pubmed/22470575 http://dx.doi.org/10.1371/journal.pone.0034484 |
work_keys_str_mv | AT chouvencthomas whensubterraneantermiteschallengetherulesoffungalepizootics AT sunanyao whensubterraneantermiteschallengetherulesoffungalepizootics |