Cargando…
Glutamatergic input–output properties of thalamic astrocytes
Astrocytes in the somatosensory ventrobasal (VB) thalamus of rats respond to glutamatergic synaptic input with metabotropic glutamate receptor (mGluR) mediated intracellular calcium ([Ca(2+)](i)) elevations. Astrocytes in the VB thalamus also release the gliotransmitter (GT) glutamate in a Ca(2+)-de...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3314995/ https://www.ncbi.nlm.nih.gov/pubmed/22233780 http://dx.doi.org/10.1016/j.neuroscience.2011.12.049 |
Sumario: | Astrocytes in the somatosensory ventrobasal (VB) thalamus of rats respond to glutamatergic synaptic input with metabotropic glutamate receptor (mGluR) mediated intracellular calcium ([Ca(2+)](i)) elevations. Astrocytes in the VB thalamus also release the gliotransmitter (GT) glutamate in a Ca(2+)-dependent manner. The tripartite synapse hypothesis posits that astrocytic [Ca(2+)](i) elevations resulting from synaptic input releases gliotransmitters that then feedback to modify the synapse. Understanding the dynamics of this process and the conditions under which it occurs are therefore important steps in elucidating the potential roles and impact of GT release in particular brain activities. In this study, we investigated the relationship between VB thalamus afferent synaptic input and astrocytic glutamate release by recording N-methyl-d-aspartate (NMDA) receptor-mediated slow inward currents (SICs) elicited in neighboring neurons. We found that Lemniscal or cortical afferent stimulation, which can elicit astrocytic [Ca(2+)](i) elevations, do not typically result in the generation of SICs in thalamocortical (TC) neurons. Rather, we find that the spontaneous emergence of SICs is largely resistant to acute afferent input. The frequency of SICs, however, is correlated to long-lasting afferent activity. In contrast to short-term stimulus-evoked GT release effects reported in other brain areas, astrocytes in the VB thalamus do not express a straightforward input–output relationship for SIC generation but exhibit integrative characteristics. |
---|