Cargando…
Age-related changes in causal interactions between cortical motor regions during hand grip
Brain activity during motor performance becomes more widespread and less lateralized with advancing age in response to ongoing degenerative processes. In this study, we were interested in the mechanism by which this change in the pattern of activity supports motor performance with advancing age. We...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315004/ https://www.ncbi.nlm.nih.gov/pubmed/22119651 http://dx.doi.org/10.1016/j.neuroimage.2011.11.025 |
_version_ | 1782228183907565568 |
---|---|
author | Boudrias, Marie-Hélène Gonçalves, Carla Sá Penny, Will D. Park, Chang-hyun Rossiter, Holly E. Talelli, Penelope Ward, Nick S. |
author_facet | Boudrias, Marie-Hélène Gonçalves, Carla Sá Penny, Will D. Park, Chang-hyun Rossiter, Holly E. Talelli, Penelope Ward, Nick S. |
author_sort | Boudrias, Marie-Hélène |
collection | PubMed |
description | Brain activity during motor performance becomes more widespread and less lateralized with advancing age in response to ongoing degenerative processes. In this study, we were interested in the mechanism by which this change in the pattern of activity supports motor performance with advancing age. We used both transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to assess age related changes in motor system connectivity during isometric hand grip. Paired pulse TMS was used to measure the change in interhemispheric inhibition (IHI) from contralateral M1 (cM1) to ipsilateral M1 (iM1) during right hand grip. Dynamic Causal Modelling (DCM) of fMRI data was used to investigate the effect of age on causal interactions throughout the cortical motor network during right hand grip. Bayesian model selection was used to identify the causal model that best explained the data for all subjects. Firstly, we confirmed that the TMS and DCM measures both demonstrated a less inhibitory/more facilitatory influence of cM1 on iM1 during hand grip with advancing age. These values correlated with one another providing face validity for our DCM measures of connectivity. We found increasing reciprocal facilitatory influences with advancing age (i) between all ipsilateral cortical motor areas and (ii) between cortical motor areas of both hemispheres and iM1. There were no differences in the performance of our task with ageing suggesting that the ipsilateral cortical motor areas, in particular iM1, play a central role in maintaining performance levels with ageing through increasingly facilitatory cortico-cortical influences. |
format | Online Article Text |
id | pubmed-3315004 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Academic Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33150042012-04-11 Age-related changes in causal interactions between cortical motor regions during hand grip Boudrias, Marie-Hélène Gonçalves, Carla Sá Penny, Will D. Park, Chang-hyun Rossiter, Holly E. Talelli, Penelope Ward, Nick S. Neuroimage Article Brain activity during motor performance becomes more widespread and less lateralized with advancing age in response to ongoing degenerative processes. In this study, we were interested in the mechanism by which this change in the pattern of activity supports motor performance with advancing age. We used both transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) to assess age related changes in motor system connectivity during isometric hand grip. Paired pulse TMS was used to measure the change in interhemispheric inhibition (IHI) from contralateral M1 (cM1) to ipsilateral M1 (iM1) during right hand grip. Dynamic Causal Modelling (DCM) of fMRI data was used to investigate the effect of age on causal interactions throughout the cortical motor network during right hand grip. Bayesian model selection was used to identify the causal model that best explained the data for all subjects. Firstly, we confirmed that the TMS and DCM measures both demonstrated a less inhibitory/more facilitatory influence of cM1 on iM1 during hand grip with advancing age. These values correlated with one another providing face validity for our DCM measures of connectivity. We found increasing reciprocal facilitatory influences with advancing age (i) between all ipsilateral cortical motor areas and (ii) between cortical motor areas of both hemispheres and iM1. There were no differences in the performance of our task with ageing suggesting that the ipsilateral cortical motor areas, in particular iM1, play a central role in maintaining performance levels with ageing through increasingly facilitatory cortico-cortical influences. Academic Press 2012-02-15 /pmc/articles/PMC3315004/ /pubmed/22119651 http://dx.doi.org/10.1016/j.neuroimage.2011.11.025 Text en © 2012 Elsevier Inc. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article Boudrias, Marie-Hélène Gonçalves, Carla Sá Penny, Will D. Park, Chang-hyun Rossiter, Holly E. Talelli, Penelope Ward, Nick S. Age-related changes in causal interactions between cortical motor regions during hand grip |
title | Age-related changes in causal interactions between cortical motor regions during hand grip |
title_full | Age-related changes in causal interactions between cortical motor regions during hand grip |
title_fullStr | Age-related changes in causal interactions between cortical motor regions during hand grip |
title_full_unstemmed | Age-related changes in causal interactions between cortical motor regions during hand grip |
title_short | Age-related changes in causal interactions between cortical motor regions during hand grip |
title_sort | age-related changes in causal interactions between cortical motor regions during hand grip |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315004/ https://www.ncbi.nlm.nih.gov/pubmed/22119651 http://dx.doi.org/10.1016/j.neuroimage.2011.11.025 |
work_keys_str_mv | AT boudriasmariehelene agerelatedchangesincausalinteractionsbetweencorticalmotorregionsduringhandgrip AT goncalvescarlasa agerelatedchangesincausalinteractionsbetweencorticalmotorregionsduringhandgrip AT pennywilld agerelatedchangesincausalinteractionsbetweencorticalmotorregionsduringhandgrip AT parkchanghyun agerelatedchangesincausalinteractionsbetweencorticalmotorregionsduringhandgrip AT rossiterhollye agerelatedchangesincausalinteractionsbetweencorticalmotorregionsduringhandgrip AT talellipenelope agerelatedchangesincausalinteractionsbetweencorticalmotorregionsduringhandgrip AT wardnicks agerelatedchangesincausalinteractionsbetweencorticalmotorregionsduringhandgrip |