Cargando…

Tuning the tetraethylammonium sensitivity of potassium channel Kcv by subunit combination

Tetraethylammonium (TEA) is a potassium (K(+)) channel inhibitor that has been extensively used as a molecular probe to explore the structure of channels’ ion pathway. In this study, we identified that Leu70 of the virus-encoded potassium channel Kcv is a key amino acid that plays an important role...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Qiulin, Ritzo, Brandon, Tian, Kai, Gu, Li-Qun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315146/
https://www.ncbi.nlm.nih.gov/pubmed/22450486
http://dx.doi.org/10.1085/jgp.201110725
Descripción
Sumario:Tetraethylammonium (TEA) is a potassium (K(+)) channel inhibitor that has been extensively used as a molecular probe to explore the structure of channels’ ion pathway. In this study, we identified that Leu70 of the virus-encoded potassium channel Kcv is a key amino acid that plays an important role in regulating the channel’s TEA sensitivity. Site-directed mutagenesis of Leu70 can change the TEA sensitivity by 1,000-fold from ∼100 µM to ∼100 mM. Because no compelling trends exist to explain this amino acid’s specific interaction with TEA, the role of Leu70 at the binding site is likely to ensure an optimal conformation of the extracellular mouth that confers high TEA affinity. We further assembled the subunits of mutant and wt-Kcv into a series of heterotetramers. The differences in these heterochannels suggest that all of the four subunits in a Kcv channel additively participate in the TEA binding, and each of the four residues at the binding site independently contributes an equal binding energy. We therefore can present a series of mutant/wild-type tetramer combinations that can probe TEA over three orders of magnitude in concentration. This study may give insight into the mechanism for the interaction between the potassium channel and its inhibitor.