Cargando…

Structural, energetic and dynamic properties of guanine(C8)–thymine(N3) cross-links in DNA provide insights on susceptibility to nucleotide excision repair

The one-electron oxidation of guanine in DNA by carbonate radical anions, a decomposition product of peroxynitrosocarbonate which is associated with the inflammatory response, can lead to the formation of intrastrand cross-links between guanine and thymine bases [Crean et al. (Oxidation of single-st...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Shuang, Kropachev, Konstantin, Cai, Yuqin, Kolbanovskiy, Marina, Durandina, Svetlana A., Liu, Zhi, Shafirovich, Vladimir, Broyde, Suse, Geacintov, Nicholas E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315297/
https://www.ncbi.nlm.nih.gov/pubmed/22135299
http://dx.doi.org/10.1093/nar/gkr1087
Descripción
Sumario:The one-electron oxidation of guanine in DNA by carbonate radical anions, a decomposition product of peroxynitrosocarbonate which is associated with the inflammatory response, can lead to the formation of intrastrand cross-links between guanine and thymine bases [Crean et al. (Oxidation of single-stranded oligonucleotides by carbonate radical anions: generating intrastrand cross-links between guanine and thymine bases separated by cytosines. Nucleic Acids Res. 2008; 36: 742–755.)]. These involve covalent bonds between the C8 positions of guanine (G*) and N3 of thymine (T*) in 5′-d(…G*pT*…) and 5′-d(…G*pCpT*…) sequence contexts. We have performed nucleotide excision repair (NER) experiments in human HeLa cell extracts which show that the G*CT* intrastrand cross-link is excised with approximately four times greater efficiency than the G*T* cross-link embedded in 135-mer DNA duplexes. In addition, thermal melting studies reveal that both lesions significantly destabilize duplex DNA, and that the destabilization induced by the G*CT* cross-link is considerably greater. Consistent with this difference in NER, our computations show that both lesions dynamically distort and destabilize duplex DNA. They disturb Watson–Crick base-pairing and base-stacking interactions, and cause untwisting and minor groove opening. These structural perturbations are much more pronounced in the G*CT* than in the G*T* cross-link. Our combined experimental and computational studies provide structural and thermodynamic understanding of the features of the damaged duplexes that produce the most robust NER response.