Cargando…
SCOREM: statistical consolidation of redundant expression measures
Many platforms for genome-wide analysis of gene expression contain ‘redundant’ measures for the same gene. For example, the most highly utilized platforms for gene expression microarrays, Affymetrix GeneChip® arrays, have as many as ten or more probe sets for some genes. Occasionally, individual pro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315298/ https://www.ncbi.nlm.nih.gov/pubmed/22210887 http://dx.doi.org/10.1093/nar/gkr1270 |
_version_ | 1782228208989503488 |
---|---|
author | Schneider, Stephanie Smith, Temple Hansen, Ulla |
author_facet | Schneider, Stephanie Smith, Temple Hansen, Ulla |
author_sort | Schneider, Stephanie |
collection | PubMed |
description | Many platforms for genome-wide analysis of gene expression contain ‘redundant’ measures for the same gene. For example, the most highly utilized platforms for gene expression microarrays, Affymetrix GeneChip® arrays, have as many as ten or more probe sets for some genes. Occasionally, individual probe sets for the same gene report different trends in expression across experimental conditions, a situation that must be resolved in order to accurately interpret the data. We developed an algorithm, SCOREM, for determining the level of agreement between such probe sets, utilizing a statistical test of concordance, Kendall's W coefficient of concordance, and a graph-searching algorithm for the identification of concordant probe sets. We also present methods for consolidating concordant groups into a single value for its corresponding gene and for post hoc analysis of discordant groups. By combining statistical consolidation with sequence analysis, SCOREM possesses the unique ability to identify biologically meaningful discordant behaviors, including differing behaviors in alternate RNA isoforms and tissue-specific patterns of expression. When consolidating concordant behaviors, SCOREM outperforms other methods in detecting both differential expression and overrepresented functional categories. |
format | Online Article Text |
id | pubmed-3315298 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-33152982012-03-30 SCOREM: statistical consolidation of redundant expression measures Schneider, Stephanie Smith, Temple Hansen, Ulla Nucleic Acids Res Methods Online Many platforms for genome-wide analysis of gene expression contain ‘redundant’ measures for the same gene. For example, the most highly utilized platforms for gene expression microarrays, Affymetrix GeneChip® arrays, have as many as ten or more probe sets for some genes. Occasionally, individual probe sets for the same gene report different trends in expression across experimental conditions, a situation that must be resolved in order to accurately interpret the data. We developed an algorithm, SCOREM, for determining the level of agreement between such probe sets, utilizing a statistical test of concordance, Kendall's W coefficient of concordance, and a graph-searching algorithm for the identification of concordant probe sets. We also present methods for consolidating concordant groups into a single value for its corresponding gene and for post hoc analysis of discordant groups. By combining statistical consolidation with sequence analysis, SCOREM possesses the unique ability to identify biologically meaningful discordant behaviors, including differing behaviors in alternate RNA isoforms and tissue-specific patterns of expression. When consolidating concordant behaviors, SCOREM outperforms other methods in detecting both differential expression and overrepresented functional categories. Oxford University Press 2012-03 2011-12-30 /pmc/articles/PMC3315298/ /pubmed/22210887 http://dx.doi.org/10.1093/nar/gkr1270 Text en © The Author(s) 2011. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Methods Online Schneider, Stephanie Smith, Temple Hansen, Ulla SCOREM: statistical consolidation of redundant expression measures |
title | SCOREM: statistical consolidation of redundant expression measures |
title_full | SCOREM: statistical consolidation of redundant expression measures |
title_fullStr | SCOREM: statistical consolidation of redundant expression measures |
title_full_unstemmed | SCOREM: statistical consolidation of redundant expression measures |
title_short | SCOREM: statistical consolidation of redundant expression measures |
title_sort | scorem: statistical consolidation of redundant expression measures |
topic | Methods Online |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315298/ https://www.ncbi.nlm.nih.gov/pubmed/22210887 http://dx.doi.org/10.1093/nar/gkr1270 |
work_keys_str_mv | AT schneiderstephanie scoremstatisticalconsolidationofredundantexpressionmeasures AT smithtemple scoremstatisticalconsolidationofredundantexpressionmeasures AT hansenulla scoremstatisticalconsolidationofredundantexpressionmeasures |