Cargando…
Towards Eliminating Bias in Cluster Analysis of TB Genotyped Data
The relative contributions of transmission and reactivation of latent infection to TB cases observed clinically has been reported in many situations, but always with some uncertainty. Genotyped data from TB organisms obtained from patients have been used as the basis for heuristic distinctions betwe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315507/ https://www.ncbi.nlm.nih.gov/pubmed/22479534 http://dx.doi.org/10.1371/journal.pone.0034109 |
_version_ | 1782228244443955200 |
---|---|
author | van Schalkwyk, Cari Cule, Madeleine Welte, Alex van Helden, Paul van der Spuy, Gian Uys, Pieter |
author_facet | van Schalkwyk, Cari Cule, Madeleine Welte, Alex van Helden, Paul van der Spuy, Gian Uys, Pieter |
author_sort | van Schalkwyk, Cari |
collection | PubMed |
description | The relative contributions of transmission and reactivation of latent infection to TB cases observed clinically has been reported in many situations, but always with some uncertainty. Genotyped data from TB organisms obtained from patients have been used as the basis for heuristic distinctions between circulating (clustered strains) and reactivated infections (unclustered strains). Naïve methods previously applied to the analysis of such data are known to provide biased estimates of the proportion of unclustered cases. The hypergeometric distribution, which generates probabilities of observing clusters of a given size as realized clusters of all possible sizes, is analyzed in this paper to yield a formal estimator for genotype cluster sizes. Subtle aspects of numerical stability, bias, and variance are explored. This formal estimator is seen to be stable with respect to the epidemiologically interesting properties of the cluster size distribution (the number of clusters and the number of singletons) though it does not yield satisfactory estimates of the number of clusters of larger sizes. The problem that even complete coverage of genotyping, in a practical sampling frame, will only provide a partial view of the actual transmission network remains to be explored. |
format | Online Article Text |
id | pubmed-3315507 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33155072012-04-04 Towards Eliminating Bias in Cluster Analysis of TB Genotyped Data van Schalkwyk, Cari Cule, Madeleine Welte, Alex van Helden, Paul van der Spuy, Gian Uys, Pieter PLoS One Research Article The relative contributions of transmission and reactivation of latent infection to TB cases observed clinically has been reported in many situations, but always with some uncertainty. Genotyped data from TB organisms obtained from patients have been used as the basis for heuristic distinctions between circulating (clustered strains) and reactivated infections (unclustered strains). Naïve methods previously applied to the analysis of such data are known to provide biased estimates of the proportion of unclustered cases. The hypergeometric distribution, which generates probabilities of observing clusters of a given size as realized clusters of all possible sizes, is analyzed in this paper to yield a formal estimator for genotype cluster sizes. Subtle aspects of numerical stability, bias, and variance are explored. This formal estimator is seen to be stable with respect to the epidemiologically interesting properties of the cluster size distribution (the number of clusters and the number of singletons) though it does not yield satisfactory estimates of the number of clusters of larger sizes. The problem that even complete coverage of genotyping, in a practical sampling frame, will only provide a partial view of the actual transmission network remains to be explored. Public Library of Science 2012-03-29 /pmc/articles/PMC3315507/ /pubmed/22479534 http://dx.doi.org/10.1371/journal.pone.0034109 Text en van Schalkwyk et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article van Schalkwyk, Cari Cule, Madeleine Welte, Alex van Helden, Paul van der Spuy, Gian Uys, Pieter Towards Eliminating Bias in Cluster Analysis of TB Genotyped Data |
title | Towards Eliminating Bias in Cluster Analysis of TB Genotyped Data |
title_full | Towards Eliminating Bias in Cluster Analysis of TB Genotyped Data |
title_fullStr | Towards Eliminating Bias in Cluster Analysis of TB Genotyped Data |
title_full_unstemmed | Towards Eliminating Bias in Cluster Analysis of TB Genotyped Data |
title_short | Towards Eliminating Bias in Cluster Analysis of TB Genotyped Data |
title_sort | towards eliminating bias in cluster analysis of tb genotyped data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315507/ https://www.ncbi.nlm.nih.gov/pubmed/22479534 http://dx.doi.org/10.1371/journal.pone.0034109 |
work_keys_str_mv | AT vanschalkwykcari towardseliminatingbiasinclusteranalysisoftbgenotypeddata AT culemadeleine towardseliminatingbiasinclusteranalysisoftbgenotypeddata AT weltealex towardseliminatingbiasinclusteranalysisoftbgenotypeddata AT vanheldenpaul towardseliminatingbiasinclusteranalysisoftbgenotypeddata AT vanderspuygian towardseliminatingbiasinclusteranalysisoftbgenotypeddata AT uyspieter towardseliminatingbiasinclusteranalysisoftbgenotypeddata |