Cargando…
GABA(A)-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus
The ability to detect novel sounds in a complex acoustic context is crucial for survival. Neurons from midbrain through cortical levels adapt to repetitive stimuli, while maintaining responsiveness to rare stimuli, a phenomenon called stimulus-specific adaptation (SSA). The site of origin and mechan...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315508/ https://www.ncbi.nlm.nih.gov/pubmed/22479591 http://dx.doi.org/10.1371/journal.pone.0034297 |
_version_ | 1782228244673593344 |
---|---|
author | Pérez-González, David Hernández, Olga Covey, Ellen Malmierca, Manuel S. |
author_facet | Pérez-González, David Hernández, Olga Covey, Ellen Malmierca, Manuel S. |
author_sort | Pérez-González, David |
collection | PubMed |
description | The ability to detect novel sounds in a complex acoustic context is crucial for survival. Neurons from midbrain through cortical levels adapt to repetitive stimuli, while maintaining responsiveness to rare stimuli, a phenomenon called stimulus-specific adaptation (SSA). The site of origin and mechanism of SSA are currently unknown. We used microiontophoretic application of gabazine to examine the role of GABA(A)-mediated inhibition in SSA in the inferior colliculus, the midbrain center for auditory processing. We found that gabazine slowed down the process of adaptation to high probability stimuli but did not abolish it, with response magnitude and latency still depending on the probability of the stimulus. Blocking GABA(A) receptors increased the firing rate to high and low probability stimuli, but did not completely equalize the responses. Together, these findings suggest that GABA(A)-mediated inhibition acts as a gain control mechanism that enhances SSA by modifying the responsiveness of the neuron. |
format | Online Article Text |
id | pubmed-3315508 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33155082012-04-04 GABA(A)-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus Pérez-González, David Hernández, Olga Covey, Ellen Malmierca, Manuel S. PLoS One Research Article The ability to detect novel sounds in a complex acoustic context is crucial for survival. Neurons from midbrain through cortical levels adapt to repetitive stimuli, while maintaining responsiveness to rare stimuli, a phenomenon called stimulus-specific adaptation (SSA). The site of origin and mechanism of SSA are currently unknown. We used microiontophoretic application of gabazine to examine the role of GABA(A)-mediated inhibition in SSA in the inferior colliculus, the midbrain center for auditory processing. We found that gabazine slowed down the process of adaptation to high probability stimuli but did not abolish it, with response magnitude and latency still depending on the probability of the stimulus. Blocking GABA(A) receptors increased the firing rate to high and low probability stimuli, but did not completely equalize the responses. Together, these findings suggest that GABA(A)-mediated inhibition acts as a gain control mechanism that enhances SSA by modifying the responsiveness of the neuron. Public Library of Science 2012-03-29 /pmc/articles/PMC3315508/ /pubmed/22479591 http://dx.doi.org/10.1371/journal.pone.0034297 Text en Pérez-González et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Pérez-González, David Hernández, Olga Covey, Ellen Malmierca, Manuel S. GABA(A)-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus |
title | GABA(A)-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus |
title_full | GABA(A)-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus |
title_fullStr | GABA(A)-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus |
title_full_unstemmed | GABA(A)-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus |
title_short | GABA(A)-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus |
title_sort | gaba(a)-mediated inhibition modulates stimulus-specific adaptation in the inferior colliculus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315508/ https://www.ncbi.nlm.nih.gov/pubmed/22479591 http://dx.doi.org/10.1371/journal.pone.0034297 |
work_keys_str_mv | AT perezgonzalezdavid gabaamediatedinhibitionmodulatesstimulusspecificadaptationintheinferiorcolliculus AT hernandezolga gabaamediatedinhibitionmodulatesstimulusspecificadaptationintheinferiorcolliculus AT coveyellen gabaamediatedinhibitionmodulatesstimulusspecificadaptationintheinferiorcolliculus AT malmiercamanuels gabaamediatedinhibitionmodulatesstimulusspecificadaptationintheinferiorcolliculus |