Cargando…
Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts
Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and l-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical mo...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315513/ https://www.ncbi.nlm.nih.gov/pubmed/22479469 http://dx.doi.org/10.1371/journal.pone.0033894 |
_version_ | 1782228245868969984 |
---|---|
author | Szymanska, Barbara Wilczynska-Kalak, Urszula Kang, Min H. Liem, Natalia L. M. Carol, Hernan Boehm, Ingrid Groepper, Daniel Reynolds, C. Patrick Stewart, Clinton F. Lock, Richard B. |
author_facet | Szymanska, Barbara Wilczynska-Kalak, Urszula Kang, Min H. Liem, Natalia L. M. Carol, Hernan Boehm, Ingrid Groepper, Daniel Reynolds, C. Patrick Stewart, Clinton F. Lock, Richard B. |
author_sort | Szymanska, Barbara |
collection | PubMed |
description | Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and l-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX) and ASP (VXL) against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL. |
format | Online Article Text |
id | pubmed-3315513 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33155132012-04-04 Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts Szymanska, Barbara Wilczynska-Kalak, Urszula Kang, Min H. Liem, Natalia L. M. Carol, Hernan Boehm, Ingrid Groepper, Daniel Reynolds, C. Patrick Stewart, Clinton F. Lock, Richard B. PLoS One Research Article Current regimens for induction therapy of pediatric acute lymphoblastic leukemia (ALL), or for re-induction post relapse, use a combination of vincristine (VCR), a glucocorticoid, and l-asparaginase (ASP) with or without an anthracycline. With cure rates now approximately 80%, robust pre-clinical models are necessary to prioritize active new drugs for clinical trials in relapsed/refractory patients, and the ability of these models to predict synergy/antagonism with established therapy is an essential attribute. In this study, we report optimization of an induction-type regimen by combining VCR, dexamethasone (DEX) and ASP (VXL) against ALL xenograft models established from patient biopsies in immune-deficient mice. We demonstrate that the VXL combination was synergistic in vitro against leukemia cell lines as well as in vivo against ALL xenografts. In vivo, VXL treatment caused delays in progression of individual xenografts ranging from 22 to >146 days. The median progression delay of xenografts derived from long-term surviving patients was 2-fold greater than that of xenografts derived from patients who died of their disease. Pharmacokinetic analysis revealed that systemic DEX exposure in mice increased 2-fold when administered in combination with VCR and ASP, consistent with clinical findings, which may contribute to the observed synergy between the 3 drugs. Finally, as proof-of-principle we tested the in vivo efficacy of combining VXL with either the Bcl-2/Bcl-xL/Bcl-w inhibitor, ABT-737, or arsenic trioxide to provide evidence of a robust in vivo platform to prioritize new drugs for clinical trials in children with relapsed/refractory ALL. Public Library of Science 2012-03-29 /pmc/articles/PMC3315513/ /pubmed/22479469 http://dx.doi.org/10.1371/journal.pone.0033894 Text en Szymanska et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Szymanska, Barbara Wilczynska-Kalak, Urszula Kang, Min H. Liem, Natalia L. M. Carol, Hernan Boehm, Ingrid Groepper, Daniel Reynolds, C. Patrick Stewart, Clinton F. Lock, Richard B. Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts |
title | Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts |
title_full | Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts |
title_fullStr | Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts |
title_full_unstemmed | Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts |
title_short | Pharmacokinetic Modeling of an Induction Regimen for In Vivo Combined Testing of Novel Drugs against Pediatric Acute Lymphoblastic Leukemia Xenografts |
title_sort | pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315513/ https://www.ncbi.nlm.nih.gov/pubmed/22479469 http://dx.doi.org/10.1371/journal.pone.0033894 |
work_keys_str_mv | AT szymanskabarbara pharmacokineticmodelingofaninductionregimenforinvivocombinedtestingofnoveldrugsagainstpediatricacutelymphoblasticleukemiaxenografts AT wilczynskakalakurszula pharmacokineticmodelingofaninductionregimenforinvivocombinedtestingofnoveldrugsagainstpediatricacutelymphoblasticleukemiaxenografts AT kangminh pharmacokineticmodelingofaninductionregimenforinvivocombinedtestingofnoveldrugsagainstpediatricacutelymphoblasticleukemiaxenografts AT liemnatalialm pharmacokineticmodelingofaninductionregimenforinvivocombinedtestingofnoveldrugsagainstpediatricacutelymphoblasticleukemiaxenografts AT carolhernan pharmacokineticmodelingofaninductionregimenforinvivocombinedtestingofnoveldrugsagainstpediatricacutelymphoblasticleukemiaxenografts AT boehmingrid pharmacokineticmodelingofaninductionregimenforinvivocombinedtestingofnoveldrugsagainstpediatricacutelymphoblasticleukemiaxenografts AT groepperdaniel pharmacokineticmodelingofaninductionregimenforinvivocombinedtestingofnoveldrugsagainstpediatricacutelymphoblasticleukemiaxenografts AT reynoldscpatrick pharmacokineticmodelingofaninductionregimenforinvivocombinedtestingofnoveldrugsagainstpediatricacutelymphoblasticleukemiaxenografts AT stewartclintonf pharmacokineticmodelingofaninductionregimenforinvivocombinedtestingofnoveldrugsagainstpediatricacutelymphoblasticleukemiaxenografts AT lockrichardb pharmacokineticmodelingofaninductionregimenforinvivocombinedtestingofnoveldrugsagainstpediatricacutelymphoblasticleukemiaxenografts |