Cargando…
Mesofluidic Devices for DNA-Programmed Combinatorial Chemistry
Hybrid combinatorial chemistry strategies that use DNA as an information-carrying medium are proving to be powerful tools for molecular discovery. In order to extend these efforts, we present a highly parallel format for DNA-programmed chemical library synthesis. The new format uses a standard micro...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315586/ https://www.ncbi.nlm.nih.gov/pubmed/22479318 http://dx.doi.org/10.1371/journal.pone.0032299 |
_version_ | 1782228262827589632 |
---|---|
author | Weisinger, Rebecca M. Marinelli, Robert J. Wrenn, S. Jarrett Harbury, Pehr B. |
author_facet | Weisinger, Rebecca M. Marinelli, Robert J. Wrenn, S. Jarrett Harbury, Pehr B. |
author_sort | Weisinger, Rebecca M. |
collection | PubMed |
description | Hybrid combinatorial chemistry strategies that use DNA as an information-carrying medium are proving to be powerful tools for molecular discovery. In order to extend these efforts, we present a highly parallel format for DNA-programmed chemical library synthesis. The new format uses a standard microwell plate footprint and is compatible with commercially available automation technology. It can accommodate a wide variety of combinatorial synthetic schemes with up to 384 different building blocks per chemical step. We demonstrate that fluidic routing of DNA populations in the highly parallel format occurs with excellent specificity, and that chemistry on DNA arrayed into 384 well plates proceeds robustly, two requirements for the high-fidelity translation and efficient in vitro evolution of small molecules. |
format | Online Article Text |
id | pubmed-3315586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33155862012-04-04 Mesofluidic Devices for DNA-Programmed Combinatorial Chemistry Weisinger, Rebecca M. Marinelli, Robert J. Wrenn, S. Jarrett Harbury, Pehr B. PLoS One Research Article Hybrid combinatorial chemistry strategies that use DNA as an information-carrying medium are proving to be powerful tools for molecular discovery. In order to extend these efforts, we present a highly parallel format for DNA-programmed chemical library synthesis. The new format uses a standard microwell plate footprint and is compatible with commercially available automation technology. It can accommodate a wide variety of combinatorial synthetic schemes with up to 384 different building blocks per chemical step. We demonstrate that fluidic routing of DNA populations in the highly parallel format occurs with excellent specificity, and that chemistry on DNA arrayed into 384 well plates proceeds robustly, two requirements for the high-fidelity translation and efficient in vitro evolution of small molecules. Public Library of Science 2012-03-29 /pmc/articles/PMC3315586/ /pubmed/22479318 http://dx.doi.org/10.1371/journal.pone.0032299 Text en Weisinger et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Weisinger, Rebecca M. Marinelli, Robert J. Wrenn, S. Jarrett Harbury, Pehr B. Mesofluidic Devices for DNA-Programmed Combinatorial Chemistry |
title | Mesofluidic Devices for DNA-Programmed Combinatorial Chemistry |
title_full | Mesofluidic Devices for DNA-Programmed Combinatorial Chemistry |
title_fullStr | Mesofluidic Devices for DNA-Programmed Combinatorial Chemistry |
title_full_unstemmed | Mesofluidic Devices for DNA-Programmed Combinatorial Chemistry |
title_short | Mesofluidic Devices for DNA-Programmed Combinatorial Chemistry |
title_sort | mesofluidic devices for dna-programmed combinatorial chemistry |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3315586/ https://www.ncbi.nlm.nih.gov/pubmed/22479318 http://dx.doi.org/10.1371/journal.pone.0032299 |
work_keys_str_mv | AT weisingerrebeccam mesofluidicdevicesfordnaprogrammedcombinatorialchemistry AT marinellirobertj mesofluidicdevicesfordnaprogrammedcombinatorialchemistry AT wrennsjarrett mesofluidicdevicesfordnaprogrammedcombinatorialchemistry AT harburypehrb mesofluidicdevicesfordnaprogrammedcombinatorialchemistry |