Cargando…

Selective Regulation of NR2B by Protein Phosphatase-1 for the Control of the NMDA Receptor in Neuroprotection

An imbalance between pro-survival and pro-death pathways in brain cells can lead to neuronal cell death and neurodegeneration. While such imbalance is known to be associated with alterations in glutamatergic and Ca(2+) signaling, the underlying mechanisms remain undefined. We identified the protein...

Descripción completa

Detalles Bibliográficos
Autores principales: Farinelli, Mélissa, Heitz, Fabrice D., Grewe, Benjamin F., Tyagarajan, Shiva K., Helmchen, Fritjof, Mansuy, Isabelle M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316588/
https://www.ncbi.nlm.nih.gov/pubmed/22479519
http://dx.doi.org/10.1371/journal.pone.0034047
Descripción
Sumario:An imbalance between pro-survival and pro-death pathways in brain cells can lead to neuronal cell death and neurodegeneration. While such imbalance is known to be associated with alterations in glutamatergic and Ca(2+) signaling, the underlying mechanisms remain undefined. We identified the protein Ser/Thr phosphatase protein phosphatase-1 (PP1), an enzyme associated with glutamate receptors, as a key trigger of survival pathways that can prevent neuronal death and neurodegeneration in the adult hippocampus. We show that PP1α overexpression in hippocampal neurons limits NMDA receptor overactivation and Ca(2+) overload during an excitotoxic event, while PP1 inhibition favors Ca(2+) overload and cell death. The protective effect of PP1 is associated with a selective dephosphorylation on a residue phosphorylated by CaMKIIα on the NMDA receptor subunit NR2B, which promotes pro-survival pathways and associated transcriptional programs. These results reveal a novel contributor to the mechanisms of neuroprotection and underscore the importance of PP1-dependent dephosphorylation in these mechanisms. They provide a new target for the development of potential therapeutic treatment of neurodegeneration.