Cargando…
Bagging Statistical Network Inference from Large-Scale Gene Expression Data
Modern biology and medicine aim at hunting molecular and cellular causes of biological functions and diseases. Gene regulatory networks (GRN) inferred from gene expression data are considered an important aid for this research by providing a map of molecular interactions. Hence, GRNs have the potent...
Autores principales: | de Matos Simoes, Ricardo, Emmert-Streib, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316596/ https://www.ncbi.nlm.nih.gov/pubmed/22479422 http://dx.doi.org/10.1371/journal.pone.0033624 |
Ejemplares similares
-
Influence of Statistical Estimators of Mutual Information and Data Heterogeneity on the Inference of Gene Regulatory Networks
por: de Matos Simoes, Ricardo, et al.
Publicado: (2011) -
Urothelial cancer gene regulatory networks inferred from large-scale RNAseq, Bead and Oligo gene expression data
por: Matos Simoes, Ricardo de, et al.
Publicado: (2015) -
Statistical Inference and Reverse Engineering of Gene Regulatory Networks from Observational Expression Data
por: Emmert-Streib, Frank, et al.
Publicado: (2012) -
Prostate Cancer Gene Regulatory Network Inferred from RNA-Seq Data
por: Moore, Daniel, et al.
Publicado: (2019) -
B-cell lymphoma gene regulatory networks: biological consistency among inference methods
por: de Matos Simoes, Ricardo, et al.
Publicado: (2013)