Cargando…
Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice
Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic n-carboxylic acids (ethanoic acid to n-octanoic acid) and several of their isomeric forms was investigated. With all 14 odorants, the animals significantly discriminated concentrations as low a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316622/ https://www.ncbi.nlm.nih.gov/pubmed/22479594 http://dx.doi.org/10.1371/journal.pone.0034301 |
_version_ | 1782228448328024064 |
---|---|
author | Can Güven, Selçuk Laska, Matthias |
author_facet | Can Güven, Selçuk Laska, Matthias |
author_sort | Can Güven, Selçuk |
collection | PubMed |
description | Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic n-carboxylic acids (ethanoic acid to n-octanoic acid) and several of their isomeric forms was investigated. With all 14 odorants, the animals significantly discriminated concentrations as low as 0.03 ppm (parts per million) from the solvent, and with four odorants the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the unbranched carboxylic acids and carbon chain length can best be described as a U-shaped function with the lowest threshold values at n-butanoic acid. A significant positive correlation between olfactory detection thresholds and carbon chain length of the carboxylic acids with their branching next to the functional carboxyl group was found. In contrast, no such correlation was found for carboxylic acids with their branching at the distal end of the carbon chain relative to the functional carboxyl group. Finally, a significant correlation was found between olfactory detection thresholds and the position of the branching of the carboxylic acids. Across-species comparisons suggest that mice are more sensitive for short-chained (C(2) to C(4)) aliphatic n-carboxylic acids than other mammalian species, but not for longer-chained ones (C(5) to C(8)). Further comparisons suggest that odor structure-activity relationships are both substance class- and species-specific. |
format | Online Article Text |
id | pubmed-3316622 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-33166222012-04-04 Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice Can Güven, Selçuk Laska, Matthias PLoS One Research Article Using a conditioning paradigm, the olfactory sensitivity of CD-1 mice for a homologous series of aliphatic n-carboxylic acids (ethanoic acid to n-octanoic acid) and several of their isomeric forms was investigated. With all 14 odorants, the animals significantly discriminated concentrations as low as 0.03 ppm (parts per million) from the solvent, and with four odorants the best-scoring animals even detected concentrations as low as 3 ppt (parts per trillion). Analysis of odor structure-activity relationships showed that the correlation between olfactory detection thresholds of the mice for the unbranched carboxylic acids and carbon chain length can best be described as a U-shaped function with the lowest threshold values at n-butanoic acid. A significant positive correlation between olfactory detection thresholds and carbon chain length of the carboxylic acids with their branching next to the functional carboxyl group was found. In contrast, no such correlation was found for carboxylic acids with their branching at the distal end of the carbon chain relative to the functional carboxyl group. Finally, a significant correlation was found between olfactory detection thresholds and the position of the branching of the carboxylic acids. Across-species comparisons suggest that mice are more sensitive for short-chained (C(2) to C(4)) aliphatic n-carboxylic acids than other mammalian species, but not for longer-chained ones (C(5) to C(8)). Further comparisons suggest that odor structure-activity relationships are both substance class- and species-specific. Public Library of Science 2012-03-30 /pmc/articles/PMC3316622/ /pubmed/22479594 http://dx.doi.org/10.1371/journal.pone.0034301 Text en Can Güven, Laska. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Can Güven, Selçuk Laska, Matthias Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice |
title | Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice |
title_full | Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice |
title_fullStr | Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice |
title_full_unstemmed | Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice |
title_short | Olfactory Sensitivity and Odor Structure-Activity Relationships for Aliphatic Carboxylic Acids in CD-1 Mice |
title_sort | olfactory sensitivity and odor structure-activity relationships for aliphatic carboxylic acids in cd-1 mice |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316622/ https://www.ncbi.nlm.nih.gov/pubmed/22479594 http://dx.doi.org/10.1371/journal.pone.0034301 |
work_keys_str_mv | AT canguvenselcuk olfactorysensitivityandodorstructureactivityrelationshipsforaliphaticcarboxylicacidsincd1mice AT laskamatthias olfactorysensitivityandodorstructureactivityrelationshipsforaliphaticcarboxylicacidsincd1mice |