Cargando…

Sensory Organ Remodeling in Caenorhabditis elegans Requires the Zinc-Finger Protein ZTF-16

Neurons and glia display remarkable morphological plasticity, and remodeling of glia may facilitate neuronal shape changes. The molecular basis and control of glial shape changes is not well understood. In response to environmental stress, the nematode Caenorhabditis elegans enters an alternative de...

Descripción completa

Detalles Bibliográficos
Autores principales: Procko, Carl, Lu, Yun, Shaham, Shai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316652/
https://www.ncbi.nlm.nih.gov/pubmed/22298710
http://dx.doi.org/10.1534/genetics.111.137786
Descripción
Sumario:Neurons and glia display remarkable morphological plasticity, and remodeling of glia may facilitate neuronal shape changes. The molecular basis and control of glial shape changes is not well understood. In response to environmental stress, the nematode Caenorhabditis elegans enters an alternative developmental state, called dauer, in which glia and neurons of the amphid sensory organ remodel. Here, we describe a genetic screen aimed at identifying genes required for amphid glia remodeling. We previously demonstrated that remodeling requires the Otx-type transcription factor TTX-1 and its direct target, the receptor tyrosine kinase gene ver-1. We now find that the hunchback/Ikaros-like C2H2 zinc-finger factor ztf-16 is also required. We show that ztf-16 mutants exhibit pronounced remodeling defects, which are explained, at least in part, by defects in the expression of ver-1. Expression and cell-specific rescue studies suggest that ztf-16, like ttx-1, functions within glia; however, promoter deletion studies show that ztf-16 acts through a site on the ver-1 promoter that is independent of ttx-1. Our studies identify an important component of glia remodeling and suggest that transcriptional changes may underlie glial morphological plasticity in the sensory organs of C. elegans.