Cargando…
Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins
Deep proteomic analysis of mammalian cell lines would yield an inventory of the building blocks of the most commonly used systems in biological research. Mass spectrometry-based proteomics can identify and quantify proteins in a global and unbiased manner and can highlight the cellular processes tha...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Biochemistry and Molecular Biology
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316730/ https://www.ncbi.nlm.nih.gov/pubmed/22278370 http://dx.doi.org/10.1074/mcp.M111.014050 |
_version_ | 1782228461781254144 |
---|---|
author | Geiger, Tamar Wehner, Anja Schaab, Christoph Cox, Juergen Mann, Matthias |
author_facet | Geiger, Tamar Wehner, Anja Schaab, Christoph Cox, Juergen Mann, Matthias |
author_sort | Geiger, Tamar |
collection | PubMed |
description | Deep proteomic analysis of mammalian cell lines would yield an inventory of the building blocks of the most commonly used systems in biological research. Mass spectrometry-based proteomics can identify and quantify proteins in a global and unbiased manner and can highlight the cellular processes that are altered between such systems. We analyzed 11 human cell lines using an LTQ-Orbitrap family mass spectrometer with a “high field” Orbitrap mass analyzer with improved resolution and sequencing speed. We identified a total of 11,731 proteins, and on average 10,361 ± 120 proteins in each cell line. This very high proteome coverage enabled analysis of a broad range of processes and functions. Despite the distinct origins of the cell lines, our quantitative results showed surprisingly high similarity in terms of expressed proteins. Nevertheless, this global similarity of the proteomes did not imply equal expression levels of individual proteins across the 11 cell lines, as we found significant differences in expression levels for an estimated two-third of them. The variability in cellular expression levels was similar for low and high abundance proteins, and even many of the most highly expressed proteins with household roles showed significant differences between cells. Metabolic pathways, which have high redundancy, exhibited variable expression, whereas basic cellular functions such as the basal transcription machinery varied much less. We harness knowledge of these cell line proteomes for the construction of a broad coverage “super-SILAC” quantification standard. Together with the accompanying paper (Schaab, C. MCP 2012, PMID: 22301388) (17) these data can be used to obtain reference expression profiles for proteins of interest both within and across cell line proteomes. |
format | Online Article Text |
id | pubmed-3316730 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | The American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-33167302012-04-10 Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins Geiger, Tamar Wehner, Anja Schaab, Christoph Cox, Juergen Mann, Matthias Mol Cell Proteomics Special Issue: Prospects in Space and Time Deep proteomic analysis of mammalian cell lines would yield an inventory of the building blocks of the most commonly used systems in biological research. Mass spectrometry-based proteomics can identify and quantify proteins in a global and unbiased manner and can highlight the cellular processes that are altered between such systems. We analyzed 11 human cell lines using an LTQ-Orbitrap family mass spectrometer with a “high field” Orbitrap mass analyzer with improved resolution and sequencing speed. We identified a total of 11,731 proteins, and on average 10,361 ± 120 proteins in each cell line. This very high proteome coverage enabled analysis of a broad range of processes and functions. Despite the distinct origins of the cell lines, our quantitative results showed surprisingly high similarity in terms of expressed proteins. Nevertheless, this global similarity of the proteomes did not imply equal expression levels of individual proteins across the 11 cell lines, as we found significant differences in expression levels for an estimated two-third of them. The variability in cellular expression levels was similar for low and high abundance proteins, and even many of the most highly expressed proteins with household roles showed significant differences between cells. Metabolic pathways, which have high redundancy, exhibited variable expression, whereas basic cellular functions such as the basal transcription machinery varied much less. We harness knowledge of these cell line proteomes for the construction of a broad coverage “super-SILAC” quantification standard. Together with the accompanying paper (Schaab, C. MCP 2012, PMID: 22301388) (17) these data can be used to obtain reference expression profiles for proteins of interest both within and across cell line proteomes. The American Society for Biochemistry and Molecular Biology 2012-03 2012-01-25 /pmc/articles/PMC3316730/ /pubmed/22278370 http://dx.doi.org/10.1074/mcp.M111.014050 Text en © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) applies to Author Choice Articles |
spellingShingle | Special Issue: Prospects in Space and Time Geiger, Tamar Wehner, Anja Schaab, Christoph Cox, Juergen Mann, Matthias Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins |
title | Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins |
title_full | Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins |
title_fullStr | Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins |
title_full_unstemmed | Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins |
title_short | Comparative Proteomic Analysis of Eleven Common Cell Lines Reveals Ubiquitous but Varying Expression of Most Proteins |
title_sort | comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins |
topic | Special Issue: Prospects in Space and Time |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3316730/ https://www.ncbi.nlm.nih.gov/pubmed/22278370 http://dx.doi.org/10.1074/mcp.M111.014050 |
work_keys_str_mv | AT geigertamar comparativeproteomicanalysisofelevencommoncelllinesrevealsubiquitousbutvaryingexpressionofmostproteins AT wehneranja comparativeproteomicanalysisofelevencommoncelllinesrevealsubiquitousbutvaryingexpressionofmostproteins AT schaabchristoph comparativeproteomicanalysisofelevencommoncelllinesrevealsubiquitousbutvaryingexpressionofmostproteins AT coxjuergen comparativeproteomicanalysisofelevencommoncelllinesrevealsubiquitousbutvaryingexpressionofmostproteins AT mannmatthias comparativeproteomicanalysisofelevencommoncelllinesrevealsubiquitousbutvaryingexpressionofmostproteins |