Cargando…
Selection of Efficient Features for Discrimination of Hand Movements from MEG Using a BCI Competition IV Data Set
The aim of a brain–computer interface (BCI) system is to establish a new communication system that translates human intentions, reflected by measures of brain signals such as magnetoencephalogram (MEG), into a control signal for an output device. In this paper, an algorithm is proposed for discrimin...
Autores principales: | Hajipour Sardouie, Sepideh, Shamsollahi, Mohammad Bagher |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317063/ https://www.ncbi.nlm.nih.gov/pubmed/22485087 http://dx.doi.org/10.3389/fnins.2012.00042 |
Ejemplares similares
-
Review of the BCI Competition IV
por: Tangermann, Michael, et al.
Publicado: (2012) -
BCI Competition IV – Data Set I: Learning Discriminative Patterns for Self-Paced EEG-Based Motor Imagery Detection
por: Zhang, Haihong, et al.
Publicado: (2012) -
Gamma band activity associated with BCI performance: simultaneous MEG/EEG study
por: Ahn, Minkyu, et al.
Publicado: (2013) -
Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b
por: Ang, Kai Keng, et al.
Publicado: (2012) -
Motor Cortical Activity during Observing a Video of Real Hand Movements versus Computer Graphic Hand Movements: An MEG Study
por: Hsieh, Yu-Wei, et al.
Publicado: (2020)