Cargando…

STING Mediates Neuronal Innate Immune Response Following Japanese Encephalitis Virus Infection

Flavivirus-mediated inflammation causes neuronal death, but whether the infected neurons can evoke an innate immune response to elicit their own protection, is unknown. In an earlier study we have shown that neuronal RIG-I, play a significant role in inducing production and release of molecules that...

Descripción completa

Detalles Bibliográficos
Autores principales: Nazmi, Arshed, Mukhopadhyay, Rupanjan, Dutta, Kallol, Basu, Anirban
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317237/
https://www.ncbi.nlm.nih.gov/pubmed/22470840
http://dx.doi.org/10.1038/srep00347
Descripción
Sumario:Flavivirus-mediated inflammation causes neuronal death, but whether the infected neurons can evoke an innate immune response to elicit their own protection, is unknown. In an earlier study we have shown that neuronal RIG-I, play a significant role in inducing production and release of molecules that are related to inflammation. In this study, using a neuronal cell line, we show that RIG-I acts with STING in a concerted manner following its interaction with Japanese encephalitis viral RNA to induce a type 1 interferon response. Knock-down of STING showed that the expressions of various inflammatory signaling molecules were down-regulated along with increased intracellular viral load. Alternatively, over-expressing STING decreased intracellular viral load. Our results indicate that at the sub-cellular level, interaction between the pattern recognition receptor RIG-I and the adapter molecule STING, is a major contributor to elicit immunological responses involving the type 1 interferons in neurons following JEV infections.